Задача № 1
Имеются следующие данные 25 предприятий легкой промышленности по величине балансовой прибыли и объему произведенной продукции:
Таблица 1.1
№ предприятия | Объем произведенной продукции, млн. руб. | Валовая прибыль,млн. руб. |
1 | 653 | 45 |
2 | 305 | 11 |
3 | 508 | 33 |
4 | 482 | 27 |
5 | 766 | 55 |
6 | 800 | 64 |
7 | 343 | 14 |
8 | 545 | 37 |
9 | 603 | 41 |
10 | 798 | 59 |
11 | 474 | 28 |
12 | 642 | 43 |
13 | 402 | 23 |
14 | 552 | 35 |
15 | 732 | 54 |
16 | 412 | 26 |
17 | 798 | 58 |
18 | 501 | 30 |
19 | 602 | 41 |
20 | 558 | 36 |
21 | 308 | 12 |
22 | 700 | 50 |
23 | 496 | 29 |
24 | 577 | 38 |
25 | 688 | 49 |
С целью изучения зависимости между объемом произведенной продукции и валовой прибылью произведите группировку предприятий по объему произведенной продукции (факторный признак), образовав пять групп предприятий с равными интервалами.
По каждой группе и совокупности предприятий подсчитайте:
1) число предприятий;
2) объем произведенной продукции – всего и в среднем на одно предприятие;
3) валовую прибыль – всего и в среднем на одно предприятие.
Результаты представьте в виде групповой таблицы. Сделайте краткие выводы.
Решение:
1. Произведем группировку предприятий по объему произведенной продукции (факторный признак), образовав пять групп предприятий с равными интервалами.
1) Определим размах вариации: R = Xmax- Xmin = 800-305 = 495
2) Длина интервала:
Группировку произведем в таблице 1.2.
Таблица 1.2
№ п/п | Группы | № банка | Объем произведенной продукции, млн. руб. | Валовая прибыль, млн. руб. | ||
средний | средняя | |||||
1 | 305-404 | 2 | 305 | 339,5 | 11 | 15 |
21 | 308 | 12 | ||||
7 | 343 | 14 | ||||
13 | 402 | 23 | ||||
Итого:
|
4
|
1358
|
60
|
|||
2 | 405-503 | 16 | 412 | 473,0 | 26 | 28 |
11 | 474 | 28 | ||||
4 | 482 | 27 | ||||
23 | 496 | 29 | ||||
18 | 501 | 30 | ||||
Итого:
|
5
|
2365
|
140
|
|||
3 | 504-602 | 3 | 508 | 557,0 | 33 | 36,667 |
8 | 545 | 37 | ||||
14 | 552 | 35 | ||||
20 | 558 | 36 | ||||
24 | 577 | 38 | ||||
19 | 602 | 41 | ||||
Итого:
|
6
|
3342
|
220
|
|||
4 | 603-701 | 9 | 603 | 657,2 | 41 | 45,6 |
12 | 642 | 43 | ||||
1 | 653 | 45 | ||||
25 | 688 | 49 | ||||
22 | 700 | 50 | ||||
Итого:
|
5
|
3286
|
228
|
|||
5 | 702-800 | 15 | 732 | 778,8 | 54 | 58 |
5 | 766 | 55 | ||||
10 | 798 | 59 | ||||
17 | 798 | 58 | ||||
6 | 800 | 64 | ||||
Итого:
|
5
|
3894
|
290
|
|||
Всего:
|
25
|
14245
|
938
|
Выводы:
Разбив на 5 групп по объему произведенной продукции банки получили, что:
1. Самая многочисленная группа 3, с количеством входящих в неё шести банков, самая малочисленная – 1, в неё входит 4 банка.
2. По объему произведенной продукции в общем и среднем, валовой прибыли и средней валовой прибыли на одно предприятие лидирует пятая группа, а первая – наименее эффективна.
Данные показывают, что при увеличении объема произведенной продукции валовая прибыль увеличивается. Следовательно, между исследуемыми признаками существует прямая корреляционная зависимость.
Задача № 2
Имеются следующие данные по двум заводам, вырабатывающим однородную продукцию:
Таблица 2.1
Номер завода | Январь | Февраль | ||
затраты времени на единицу продукции, час | изготовлено продукции, шт | затраты времени на | ||
единицу продукции, час | всю продукцию, час | |||
1 | 2 | 160 | 1,8 | 420 |
2 | 2,8 | 180 | 2,4 | 440 |
Вычислите средние затраты времени на изготовление единицы продукции по двум заводам в январе и феврале. Укажите виды средних величин, используемых в решении задач.
Решение:
Для января статистические данные представлены количеством выпущенной продукции и затратами времени на выпуск единицы продукции, поэтому средние затраты времени на изготовление единицы продукции определяем по формуле средней арифметической взвешенной:
= ,
где х - затраты времени на единицу продукции, час.
f - изготовлено продукции, шт.
= час.
Для февраля статистические данные представлены затратами времени на весь выпуск продукции и затратами времени на выпуск единицы продукции, поэтому средние затраты времени на изготовление единицы продукции определяем по формуле средней гармонической взвешенной:
= ,
где w – объем признака, равный произведению вариант на частоты: w = x f.
=
На заводе №1 в январе затраты времени на единицу продукции были снижены с 2 до 1,8 часа. На заводе №2 в 1993 г. затраты времени на единицу продукции были снижены с 2,8 до 2,4 часа.
В среднем по двум заводам затраты времени снизились с 2,424 до 2,0,64 часа, что практически обусловлено снижением эффективности производства на заводах.
Задача № 3
В целях изучения стажа рабочих одного из цехов завода проведена 10%-ная механическая выборка, в результате которой получено следующее распределение рабочих по стажу работы:
Таблица 3.1
Стаж рабочих, лет | Число рабочих, чел |
До 5 От 5 до 10 От 10 до 15 От 15 до 20 От 20 до 25 Свыше 25 |
5 10 35 25 15 10 |
Итого | 100 |
На основании этих данных вычислите:
1. Средний стаж рабочих цеха.
2. Средний квадрат отклонений (дисперсию) и среднее квадратическое отклонение.
3. Коэффициент вариации.
4. С вероятностью 0,997 предельную ошибку выборочной средней и возможные границы, в которых ожидается средний стаж рабочих цеха.
5. С вероятностью 0,997 предельную ошибку выборочной доли и границы удельного веса числа рабочих со стажем работы от 10 до 20 лет.
Сделайте выводы.
Решение:
Для вычисления средней величины в каждой группе определяем серединное значение (середину интервала), после чего определяем средний стаж рабочих цеха по формуле средней арифметической взвешенной.
В закрытом интервале серединное значение определяем как полусумму верхней и нижней границ, открытые интервалы приравниваются к рядом стоящим. Кроме того, для расчёта дисперсии последовательно определяем отклонение каждой группы от средней, квадрат отклонения и произведение квадрата отклонения на число работников в группе. Расчёт производим в таблице 3.2.
Таблица 3.2
Расчет среднего квадратического отклонения
Стаж рабочих, лет | Число рабочих, чел. f | х | xf | ()2 | ()2 f | |
До 5 | 5 | 2,5 | 12,5 | -13,25 | 175,563 | 877,813 |
5-10 | 10 | 7,5 | 75 | -8,25 | 68,0625 | 680,625 |
10-15 | 35 | 12,5 | 437,5 | -3,25 | 10,5625 | 369,688 |
15-20 | 25 | 17,5 | 437,5 | 1,75 | 3,0625 | 76,5625 |
20-25 | 15 | 22,5 | 337,5 | 6,75 | 45,5625 | 683,438 |
св. 25 | 10 | 27,5 | 275 | 11,75 | 138,063 | 1380,63 |
Итого:
|
100
|
- | 1575
|
- | - | 4068,75
|
1. Определим средний стаж рабочих цеха:
= = = 15,75 лет.
2. Определим среднее квадратическое отклонение:
σ = = 6,379 лет.
Дисперсия признака σ2 = = 40,688 лет.
3. Определим коэффициент вариации
V = %
4. Определим с вероятностью 0,997 предельную ошибку выборочной средней и возможные границы, в которых ожидается средний стаж рабочих цеха.
Так как выборка механическая, то ошибка выборочного наблюдения определяется по формуле:
Δх = t
При =3μ и p = w3μ степень вероятности повышается до 0,997.
Таким образом:
t = 3
σ2= 40,688 - дисперсия признака;
n = 15,75 - средний стаж рабочих цеха;
- это 10%-ная механическая выборка.
Δх = t
Доверительные интервалы для средней будут равны:
– Δх + Δх .
=15,75 лет.4,574 года. или 15,75-4,5715,75+4,57
С вероятностью 0,997 можно утверждать, что средний стаж рабочих цеха находится в пределах от 11,18 дней до 20,32 дней.
5. Определим с вероятностью 0,997 предельную ошибку выборочной доли и границы удельного веса числа рабочих со стажем работы от 10 до 20 лет.
Средняя ошибки для выборочной доли при бесповторном способе отбора рассчитывается по формуле:
Δw = t.
При =3μ и p = w3μ степень вероятности повышается до 0,997.
Таким образом:
t = 3;
n = 100 - численность рабочих цеха;
- это 10%-ная механическая выборка;
Определим w - удельный вес числа рабочих со стажем работы от 10 до 20 лет.
25+35
=0,6 или 60%,
100
т.е. доля рабочих со стажем работы от 10 до 20 лет – 60%.
Δw = t или 13,9%.
Доверительные интервалы для доли будут равны:
p = w Δw .
p = 60% 13,9%, тогда 60% – 13,9% p 60% + 13,9%.
Доля числа рабочих со стажем работы от 10 до 20 лет будет находиться в пределах от 46,1 до 73,9% при вероятности 0,997.
Задача № 4
Численность населения России характеризуется следующими данными:
Таблица 4.1
Годы | На начало года, тыс. чел |
1997 2002 2003 2004 2005 2006 2007 |
148041 148306 147976 147502 147105 146388 145500 |
Для анализа численности населения России за 2002-2007 гг. определите:
1. Абсолютные приросты, темпы роста и темпы прироста по годам и к 2002 году.
Полученные показатели представьте в таблице.
2. Среднегодовую численность населения России.
3. Среднегодовой темп роста и прироста численности населения России за 2002-2007 гг. и за 1997-2002 гг.
Постройте график динамики численности населения России.
Сделайте выводы.
Решение:
1. Определим абсолютные приросты, темпы роста и темпы прироста по годам и к 2002 году. Полученные показатели представим в таблице 4.2.
Таблица 4.2
Абсолютные приросты, темпы роста и т
Годы | На начало года, тыс. чел уi
|
Абс. приросты, млн.тонн | Темпы роста | Темпы прироста, % | |||
цепные | базисные (к 2002г) | цепные | базисные (к 2002г) | цепные | базисные (к 2002г) | ||
yц = уi
– yi - 1 |
yб = уi
|
k = | k = | Δkц = kц % – 100 |
Δkб = k % – 100 |
||
1997 | 148041 | 265 | -265 | 1,002 | 0,998 | 0,2% | -0,2% |
2002 | 148306 | - | - | - | - | - | - |
2003 | 147976 | -330 | -330 | 0,998 | 0,998 | -0,2% | -0,2% |
2004 | 147502 | -474 | -804 | 0,997 | 0,995 | -0,3% | -0,5% |
2005 | 147105 | -397 | -1201 | 0,997 | 0,992 | -0,3% | -0,8% |
2006 | 146388 | -717 | -1918 | 0,995 | 0,987 | -0,5% | -1,3% |
2007 | 145500 | -888 | -2806 | 0,994 | 0,981 | -0,6% | -1,9% |
2. Определим среднегодовую численность населения России за 2002-2007 гг.:
За 2002-2007 гг. мы имеем интервальный ряд динамики с равными интервалами. Поэтому среднегодовую численность населения исчислим по формуле средней арифметической простой:
====
147129,5тыс.чел.
где у
– уровни ряда
n
– число уровней ряда.
3. Среднегодовой темп роста и прироста численности населения России за 2002-2007 гг.
Среднегодовой темп роста исчисляется по формуле средней геометрической из цепных коэффициентов роста:
==,
где n
– число цепных темпов роста;
за 2002-2007 гг.: ===0,996 или 99,6%.
Среднегодовой темп роста численности населения России за 2002-2007 гг. равен 99,6 %.
Среднегодовой темп прироста за 2002-2007 гг. исчисляется следующим образом:
Δ = % – 100%=99,6–100=0,4%.
Таким образом, численность населения России за период 2002-2007 гг. уменьшалось за год в среднем на 0,4%.
Выводы:
численность населения России по данным таблицы 4.1. в 2002 году повысилась по сравнению с 1997 годом на 265 тыс.чел. или на 0,2%. Затем вплоть до 2007 года снижалось в среднем на 0,4% за год.
Задача № 5
Имеются следующие данные о стоимости имущества предприятия (млн. руб.):
Таблица 5.1
01.01. | 01.02. | 01.03. | 01.04. | 01.05. | 01.06. | 01.07. | |
Стоимость имущества, млн. руб. | 62 | 68 | 65 | 68 | 70 | 75 | 78 |
Определите среднегодовую стоимость имущества:
1) за I квартал;
2) за II квартал;
3) за полугодие в целом.
Решение:
Среднегодовая стоимость имущества рассчитывается по формуле средней арифметической простой:
За I квартал: = = 66 млн. руб.
За II квартал: = = 72,667 млн. руб.
За полугодие в целом: = = 69,333 млн. руб.
Задача № 6
Динамика средних цен и объема продажи на колхозных рынках города характеризуется следующими данными:
Таблица 6.1
Наименование товара | Продано товаров за период, тыс. кг | Средняя цена за 1 кг за период, руб. | ||
базисный | отчетный | базисный | отчетный | |
Колхозный рынок № 1: Картофель Свежая капуста |
6,0 2,5 |
6,2 2,4 |
8,0 15,0 |
8,5 19,0 |
Колхозный рынок №2: Картофель |
12,0 | 12,8 | 7,5 | 8,0 |
На основании имеющихся данных вычислите:
1. Для колхозного рынка № 1 (по двум видам товаров вместе):
а) общий индекс товарооборота в фактических ценах;
б) общий индекс цен;
в) общий индекс физического объема товарооборота.
Определите в отчетном периоде прирост товарооборота в абсолютной сумме и разложите по факторам (за счет изменения цен и объема продаж товаров).
Покажите взаимосвязь начисленных индексов.
2. Для двух колхозных рынков вместе (по картофелю):
а) индекс цен переменного состава;
б) индекс цен постоянного состава;
в) индекс влияния изменения структуры объема продажи картофеля на динамику средней цены.
Решение:
1. Для колхозного рынка № 1 определим индивидуальные индексы:
По товару Картофель: i
p = = = 1,033 или 103,3%,
i
q = = = 1,063 или 106,3%,
По товару Свежая капуста: i
p = = = 0,960 или 96%,
i
q = = = 1,267 или 126,7%.
Таблица 6.2
Индивидуальные индексы для товаров колхозного рынка №1
Индивидуальные индексы | Продано товаров за период, тыс. кг | Средняя цена за 1 кг за период, руб. |
Картофель | 1,033 | 1,063 |
Свежая капуста | 0,960 | 1,267 |
Таким образом:
– цены на картофель выросли в отчетном году на 6,3%;
– объем продаж по картофелю увеличился на 3,3%.
– цены на свежую капусту выросли в отчетном периоде на 26,7%;
– свежей капусты было продано в отчетном периоде по сравнению с базисным на 4% меньше.
а) Чтобы определить изменение товарооборота в фактических ценах в абсолютной сумме, необходимо рассчитать агрегатный индекс товарооборота в фактических ценах:
I
pq = = = = 1,150 или 115,0%.
Разность между числителем и знаменателем индекса товарооборота в фактических ценах дает прирост (или снижение) товарооборота в абсолютной сумме:
Δpq = –= 98,3-85,5 = 12,8 (тыс. руб.).
Товарооборот в фактических ценах вырос в отчетном периоде по сравнению с базисным периодом на 15% или на 12,8 тыс.руб.
б) Перейдем к расчету агрегатного индекса цен. В качестве веса введем в индекс неизменное количество товаров отчетного периода (по формуле Пааше). Формула агрегатного индекса цен будет выглядеть следующим образом:
I
p = = = = 1,148 или 114,8%.
Разность между числителем и знаменателем индекса цен дает прирост (снижение) товарооборота за счет изменения цен:
Δpq(p)
= –= 98,3-85,6 =12,7 (тыс. руб.).
Прирост товарооборота в абсолютной сумме в отчетном периоде составил 12,7 тыс. рублей за счет увеличения цен на 14,8%.
в) Чтобы рассчитать агрегатный индекс физического объема товарооборота, который будет характеризовать изменение объема продажи товаров, примем в качестве веса неизменные цены базисного периода и определим стоимость каждого товара:
I
q = = = = 1,001 или 100,1%,
Разность между числителем и знаменателем индекса физического объема товарооборота дает прирост (или снижение) товарооборота в неизменных ценах:
Δpq(q)
= –= 85,6-85,5 = 0,1 (тыс. руб.).
Прирост товарооборота в абсолютной сумме в отчетном периоде за счет увеличения количества проданного товара на 0,1% составил 0,1 тыс. руб.
Связь между изменениями объема товарооборота, количеством продажи товаров и уровнем их цен выражается в системе взаимосвязанных индексов:
= или = I
pq ,
тогда в нашем примере:
1,148*1,001=1,150
Произведение двух индексов () дает нам показатель динамики товарооборота в фактических ценах (Ipq), то есть за счет роста цен на 14,8% (в абсолютной сумме – 12,7 тыс.руб.) и увеличения объема продаж на 0,1% (в абсолютной сумме – 100 руб.), товарооборот увеличился в отчетном году на 15% (в абсолютной сумме – 12,8 тыс.руб.).
2. а) Индекс цен переменного состава определим по следующей формуле:
==:
или =:==1,0648 или 106,48%.
Средняя цена единицы продукции по двум заводам возросла на 6,48%.
б) Индекс постоянного состава определим по агрегатному индексу цен:
I
p = = = = 1,0652 или 106,52%.
Это означает, что в среднем по двум заводам цена единицы повысилась на 6,52%.
в) Индекс структурных сдвигов определим по формуле:
I
стр
= :
илиI
стр
= :==0,9995 или 99,95%
Средняя цена единицы по двум заводам снизилась на 0,05% за счет изменения удельного веса на отдельном заводе в общем выпуске продукции.
Покажем взаимосвязь трех исчисленных индексов:
= или 1,0652 = .
Общий вывод:
Если бы происшедшие изменения цен продукции не сопровождались перераспределениями в ее выпуске, то средняя себестоимость продукции по двум заводам выросла бы на 6,48%.
Изменение структуры выпуска продукции в общем объеме вызвало снижение цен на 0,05%. Одновременное воздействие двух факторов увеличило среднюю цену продукции по двум заводам на 6,52%.
группировка средний прирост дисперсия
Задача № 7
По заводу имеются следующие данные о выпуске продукции:
Таблица 7.1
Вид продукции | Выпуск продукции в I квартале, тыс. руб. | Увеличение (+) или уменьшение (-) выпуска продукции во II квартале по сравнению с I кварталом, % |
Рельсы трамвайные | 22300 | +3,0 |
Чугун литейный | 15800 | -2,0 |
Железо листовое | 10500 | +1,5 |
1.Определить общий индекс физического объема продукции.
2.Определить сумму изменения затрат за счет объема произведенной продукции.
Решение:
1. Определим индивидуальные индексы физического объема товарооборота в таблице:
Таблица 7.2
Вид продукции | Выпуск продукции в I квартале, тыс. руб. | Индивидуальный индекс физического объема, т/об |
Рельсы трамвайные | 22300 | 1,03 |
Чугун литейный | 15800 | 0,98 |
Железо листовое | 10500 | 1,015 |
q = = = = 1,011
Физический объем продукции увеличился на 1,1%.
2. Сумма изменения затрат равна 49110,5-48600 = 510,5 тыс.руб.
Таким образом за счет увеличения физического объема продукции на 1,1% сумма затрат увеличилась на 510,5 тыс.руб.
Задача № 8
Для изучения тесноты связи между объемом произведенной продукции (факторный признак – Х) и балансовой прибылью (результативный признак – У) по данным задачи № 1 вычислите эмпирическое корреляционное отношение.
Сделайте выводы.
Решение:
Для расчета межгрупповой дисперсии строим расчетную таблицу 8.1.
Таблица 8.1
Расчет среднего квадратического отклонения
Группы банков по объему произведенной продукции | Число банков n |
Сумма прибыли на один банк, млн.руб. У | ()2 | ()2n | |
305-404 | 4 | 15,00 | -22,520 | 507,150 | 2028,602 |
405-503 | 5 | 28,00 | -9,520 | 90,630 | 453,152 |
504-602 | 6 | 36,67 | -0,853 | 0,728 | 4,369 |
603-701 | 5 | 45,60 | 8,080 | 65,286 | 326,432 |
702-800 | 5 | 58,00 | 20,480 | 419,430 | 2097,152 |
Итого: | 25 | 37,52 | 4909,707 |
Рассчитаем межгрупповую дисперсию по формуле
= ==196,388
Для расчета общей дисперсии возведем все значения «у
» (валовую прибыль) в квадрат.
Таблица 8.2
Валовая прибыль, млн.руб. У |
Валовая прибыль, млн.руб. У2 |
Валовая прибыль, млн.руб. У |
Валовая прибыль, млн.руб. У2 |
Валовая прибыль, млн.руб. У |
Валовая прибыль, млн.руб. У2 |
45 | 2025 | 59 | 3481 | 41 | 1681 |
11 | 121 | 28 | 784 | 36 | 1296 |
33 | 1089 | 43 | 1849 | 12 | 144 |
27 | 729 | 23 | 529 | 50 | 2500 |
55 | 3025 | 35 | 1225 | 29 | 841 |
64 | 4096 | 54 | 2916 | 38 | 1444 |
14 | 196 | 26 | 676 | 49 | 2401 |
37 | 1369 | 58 | 3364 | ИТОГО
|
40362
|
41 | 1681 | 30 | 900 |
Рассчитаем общую дисперсию по формуле:
= – = – 37,522 = 206,73
Тогда коэффициент детерминации будет:
η2 == = 0,950.
Он означает, что вариация суммы выданных банком кредитов на 95% объясняется вариацией размера процентной ставки и на 5% – прочими факторами.