1.
Використання алгебри матриць.
В економічний задачах алгебра матриць використовується як засіб збереження інформації в табличній формі.
Приклад 1.
Сезонний продаж товарів трьох видів (α, β, γ) здійснюють три магазини (12 3). Обсяги реалізації цих товарів (в грош. од.) кожним магазином представлено у вигляді матриць
; В = ; С = ,
де в рядках вказано суми, отримані кожним магазином за відповідний сезон (зима, весна, літо, осінь), а в стовпчиках – суми, отримані за продаж відповідного товару (α, β, γ) . Потрібно: 1) перевірити, що суми реалізації товарів першого і третього магазинів разом більші, ніж другого; 2) записати у вигляді матриці сукупні суми реалізації товарів трьома магазинами.
Розв'язування.
Знаходимо обсяг реалізації товарів кожного виду першим і третім магазинами. Він дорівнює сумі А+С:
А+С =
Порівнюючи елементи матриці А+С з відповідними елементами матриці В, легко пересвідчитися, що у кожному сезоні перший і третій магазини разом продали кожному виду товарів більше, ніж другий магазин. Щоб записати у вигляді матриці дані про сукупний продаж магазинів, знайдемо матрицю А+В+С:
А+В+С =
Приклад 2.
Випуск готової продукції п'яти підприємств включає чотири види виробів (α, β, γ, δ). Для їх виробництва використовуються три різні типи сировини (І, ІІ, ІІІ). Дані щоденної продуктивності підприємств з кожного виробу (число виробів за дань) і витрат сировини на одиницю виробу (кг/шт.), а також число днів роботи кожного підприємства і вартість у гривнях 1 кг сировини кожного типу, наведено в таблиці.
Вироби
|
Продуктивність підприємств шт. /день
|
Витрати сировини, кг/шт.
|
||||||
1 |
2 |
3 |
4 |
5 |
І |
ІІ |
ІІІ |
|
α |
6 |
10 |
0 |
6 |
2 |
5 |
3 |
4 |
β |
4 |
3 |
0 |
4 |
5 |
10 |
4 |
6 |
γ |
0 |
15 |
10 |
3 |
4 |
2 |
5 |
5 |
δ |
3 |
5 |
8 |
7 |
6 |
4 |
8 |
6 |
Час роботи підприємств (дн.)
|
Ціна сировини (грн./кг)
|
|||||||
100 |
200 |
140 |
150 |
170 |
30 |
20 |
50 |
Потрібно визначити:
а) сумарну продуктивність кожного підприємства по кожному з виробів за весь виробничий період);
б) потреби кожного підприємства у різних типах сировини;
в) розміри кредитування підприємств для закупівлі сировини.
Розв'язування.
Розглянемо матрицю А, що характеризує продуктивність підприємств, матрицю В – витрат сировини і С – матрицю цін, тоді
Продуктивність підприємств Вид виробу
1 2 3 4 5
1 2 3 4
А = Вид виробу В = Вид сировини
С= (30 20 50).<
а) Кожний стовпчик матриці А відповідає денній продуктивності окремого підприємства з кожного виду продукції. Щоб отримати річну продуктивність j-го підприємства (j=1,2,3,4,5), потрібно помножити j-тий стовпець матриці А на кількість робочих днів цього підприємства. Час роботи кожного з підприємств запишемо у вигляді діагональної матриці
Т =
Тоді загальна продуктивність за виробничий період є добуток матриць А.
Т:
АТ = =
підприємства
вироби
б) Витрати сировини кожного підприємства є добуток В.
(АТ):
В.
АТ = =
в) Вартість річного запасу сировини одержуємо як добуток матриці цін С на матрицю витрат В(АТ):
D = C.
(B.
(AT)) = (30 20 50)=
(692000 3038000 1223600 157500 1587800).
Отже, величини кредитування j-го підприємства на закупівлю сировини визначаються компонентами матриці D.
2. Економічні задачі, що зводяться до систем лінійних рівнянь.
Приклад 3.
Для випуску виробів трьох видів (α, β, γ) підприємство використовує сировину 3-х типів (S1
, S2
, S3
). Норми витрат кожного з типів сировини на один виріб і обсяг витрат сировини за один день задано таблицею:
Вид сировини |
Норми витрат сировини на один виріб, ум. од. |
Витрати сировини за день, ум. од |
||
α |
β |
γ |
||
S1
|
9 |
3 |
4 |
2700 |
S2
|
7 |
1 |
6 |
2700 |
S3
|
14 |
5 |
6 |
4200 |
Знайти щоденний обсяг випуску кожного виду виробів.
Розв'язування.
Припустимо, підприємство щодня виробляє х1
одиниць виробів виду α, х2
одиниць – виду β і х3
одиниць виробів виду γ. Тоді, відповідно з витратами
Сировини кожного виду, маємо систему:
Розв'Язавши цю систему, знайдено х1
=100, х2
=200, х3
=300. Це означає, що підприємство щоденно виробляє 100 виробів виду α, 200 виробів виду β і 300 виробів виду γ.
Приклад 4.
Два заводи виготовляють апарати для двох підприємство. Підприємствам необхідно отримати 120 і 80 апаратів відповідно. Перший завод випустив 150 апаратів, а другий – 50. Витрати на перевезення апаратів із заводів кожного підприємства такі:
Завод |
Витрати на перевезення, грош.од. |
|
1 |
2 |
|
1 |
10 |
20 |
2 |
5 |
25 |
Мінімальні витрати на перевезення становлять 2850 грош.од. Знайти оптимальний план перевезення апаратів.
Розв'язування.
Позначимо хij
– кількість апаратів, що надходять з і-го заводу до j-го підприємства. Тоді можемо скласти таку систему:
Розв'язавши систему, наприклад, методом Гаусса, знайдемо х11
=100, х12
=50, х21
=20, х22
=30.