РефератыЭкономико-математическое моделированиеМоМоделирование предприятия в MS Excel

Моделирование предприятия в MS Excel

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ


РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ «РИНХ»


ФАКУЛЬТЕТ КОММЕРЦИИ И МАРКЕТИНГА


Кафедра Коммерции и логистики


Контрольная работа


по курсу «ЭММ и модели в логистических исследованиях»


Ростов–на–Дону


2009 г.


Задача №10


Условие задачи: консервный завод Popeye перерабатывает за смену 60000 фунтов спелых помидор (7 пенсов за фунт) в томатный сок и пасту. Готовая продукция пакетируется в упаковки по 24 банки. Производство одной банки сока требует одного фунта спелых помидоров, а одной банки пасты – трети фунта. Заводской склад может принять за одну смену только 2000 упаковок сока и 6000 упаковок пасты. Оптовая цена одной упаковки томатного сока составляет 18 долл., одной упаковки томатной пасты – 9 долл.


а) Найдите оптимальную структуру производства консервного завода.


б) Найдите отношение оптовых цен на продукцию завода, при котором заводу будет выгоднее производить больше томатной пасты, чем сока.


Решение


Решения задачи будем проводить с использованием ЭВМ и приложения MicrosoftOfficeExcel пакета MicrosoftOffice. Для решения первого пункта данной задачи, на основе известных данных, составим целевую функцию, обозначив через х1
– количество выпускаемых за смену банок сока, а х2
– количество выпускаемых за смену банок томата:





(1)

Далее запишем систему ограничений:








(2)

Записав полученные уравнения в Excel и, добавив, строки для расчета, получим:



Рисунок 1 – Вид таблицы в Excel для решения первого пункта задачи


Искомые х1
и х2
обозначим для начала через 0 в ячейках C5 и D5, соответственно. Далее, воспользуемся функцией «суммпроизв (x; y)» для ячейки F6, в которой и запишем определенную выше целевую функцию:





(3)

В ячейке F4 запишем определенное выше ограничение для количества перерабатываемых за смену помидор:





(4)

Теперь, установив курсор в ячейку F6, воспользуемся сервисом «Поиск решения». Для этого в меню «Сервис»
выберем «Поиск решения»
. В появившемся окне выставляем все ранее определенные значения, а именно:


- целевую ячейку;


- условия максимума;


- изменяемые ячейки;


- ограничения.


-



Рисунок 2 – Выставление параметров и услов

ий сервиса «Поиск решения»


Далее выбираем «Параметры»
и отмечаем поля «Линейная модель», «Неотрицательные значения», «Автоматическое масштабирование». Затем нажимаем «ОК», «Выполнить», «ОК».



Рисунок 3 – Выбор параметров расчета сервиса «Поиск решения»



Рисунок 4 – Результат вычисления


Таким образом, была определена оптимальная структура производства консервного завода. Ей является производство за смену 12 480 банок сока и 144 000 банок томата (соответственно 520 и 6000 упаковок).


Для решения второго пункта задачи проведем анализ: оптовая цена на сок в 2 раза больше оптовой цены на томат, в то время как ресурсов на сок затрачивается в 3 раза больше. Следовательно, при данном соотношении цен заводу выгоднее производить больше томата, чем сока.


Задача №16

Условие задачи: найти условный экстремум функции:



при условиях



Решение


Решения задачи будем проводить с использованием ЭВМ и приложения MicrosoftOfficeExcel пакета MicrosoftOffice.


Составим таблицу с данными (рисунок 5). В ячейках C3, D3, E3 запишем начальные приближения неизвестных x1
, x2
, x3
.


Условия ограничений запишем в ячейках G4 и G5. В ячейке G3 запишем функцию, экстремум которой нам предстоит найти:











(5)
(6)
(7)


Рисунок 5 – Таблица исходных данных


Теперь, для определения максимума функции, воспользуемся сервисом «Поиск решения». Для этого в меню «Сервис»
выберем «Поиск решения»
. В появившемся окне выставляем все ранее определенные значения, а именно:


- целевую ячейку;


- условия максимума;


- изменяемые ячейки;


- ограничения.



Рисунок 6 – Окно функции «Поиск решения» с выставленными значениями



Рисунок 7 – Настройка параметров функции «Поиск решения» для поиска экстремума функции



Рисунок 8 – Сохранение полученных результатов



Рисунок 9 – Результаты расчета


Для нахождения минимума функции повторим туже операцию, но выставив параметр «минимум» в окне функции «поиск решения». Результат расчета получается таким же, как и для максимума.


Таким образом, мы получили, что условный экстремум функции:



при условиях



будет находится в точке с координатами: x1
= 3,88; x2
= -1,41; x3
= 1,53.


Список использованных источников


1 Ашманов С А. Линейное программирование. М.: Наука, 1981.


2 Кузнецова А.В. Экономико-математические методы и модели. Мн.: БГЭУ, 1999.


3 «Microsoft Excel 2000 в подлиннике», БХВ – Санкт-Петербург, 1999 год.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Моделирование предприятия в MS Excel

Слов:690
Символов:6217
Размер:12.14 Кб.