Сибирский государственный университет путей сообщения
Домашнее задание по дисциплине «Математическое моделирование»
Задачи №1, №2
Разработал: студент гр. М-511
Ревнивцев
2008
Задача№1
В тупике железнодорожного пути установлен буфер (рисунок 1), имеющий упругий элемент с нелинейной жесткостью, восстанавливающая сила которого изменяется по закону
.
1 – вагон; 2 – буфер; 3 – демпфер
Рисунок 1 – Схема к решения задачи.
В направлении тупика движется вагон массой m и скоростью X. При столкновении вагона с упругим элементом, последний смещается на величину X1. В задаче также приняты следующие допущения: 1) масса буфера мала по сравнению с массой вагона; 2) после удара контакт между этими объектами сохраняется.
Восстанавливающая сила (закон изменения):
(1)
В задаче требуется определить:
- максимальное перемещение буфера;
- максимальное значение восстанавливающей силы;
- время, за которое восстанавливающая сила достигнет максимального значения.
На данную систему (рисунок 1) действуют силы: сила инерции движущегося вагона; сила демпфирования (или сила вязкого трения), пропорциональная скорости движения вагона; а также восстанавливающая сила упругого элемента-демпфера.
Сила инерции:
, (2)
Сила демпфирования:
, (3)
Сила упругости:
(4)
Для решения поставленной задачи следует решить обыкновенное дифференциальное уравнение второго порядка вида:
(5)
Заменим уравнение (5) системой уравнений первого порядка, для этого введем новую неизвестную функцию и перепишем исходное уравнение, представив его в виде системы из двух уравнений:
(6)
Решение проводим в системе MathCad с построением графических зависимостей: 1) скорости движения вагона от времени; 2) перемещения буфера от времени; 3) восстанавливающей силы от времени. Неизвестные выше исходные данные записываются непосредственно в программе.
Исходное уравнение имеет вид:
, (7)
где - коэффициент демпфирования, ;
- масса вагона, кг;
- жесткость упругого элемента, Н/м;
- численный коэффициент, ;
- скорость вагона при подходе к тупику, м/с;
Начальные условия:
(8)
Уравнение (8) решается в системе MathCad посредствам встроенной функцией – rkfixed:
Z:= rkfixed (y, 0, t, n. D) (9)
где Z – вектор неизвестных;
y – вектор начальных условий;
0 и t – интервал, на котором ищется решение;
n – количество точек на интервале.
В ходе вычислений получена следующая система ответов:
Колонка «0» - промежутки времени; колонка «1» - перемещение в каждый момент времени; колонка «2» - скорость вагона в каждый момент времени.
Определение восстанавливающей силы.
Расчет ведется при разбиении -
Функциональная зависимость в программе:
Колонка «0» - значения восстанавливающей силы.
Далее в программе ведется построение необходимых графиков на интервале: .
График зависимости перемещения от времени
График зависимости скорости от времени
График зависимости силы от перемещения
После проведения решений выведены лишь шестнадцать рассчитанных значений. В общем же получено 300 значений, что соответствую числу интервалов.
Проанализировав результаты получаем:
- максимальное перемещение буфера – 0,0782 метра;
- максимальное значение восстанавливающей силы - ;
- время, за которое восстанавливающая сила достигнет максимального значения – 0,725 сек.
Задача №2
Данный планетарный редуктор (рисунок 2) представляет собой механическую вращательную систему, которая состоит из четырех подсистем. Связь между подсистемами ос
Опишем каждую из подсистем. Первая подсистема включает зубчатое колесо 1 (рисунок 2), которое находиться во внешнем зацеплении с сателлитом 2, вал «а» вращающийся в опоре 7 от привода 5, имеющий крутящий момент Мвх
. Вторая подсистема включает: сателлит 2, который имеет внешнее зацепление с подвижным зубчатым колесом 1 и внутреннее зацепление с неподвижным зубчатым колесом 3. Третья подсистема это неподвижное зубчатое колесо 3, которое находиться во внутреннем зацеплении с сателлитом 2. Четвертая подсистема состоит из сателлита 2, вращающегося вокруг оси вала «в» вместе с водилом 4, вала «б», вала «в», опор 8,9 и нагрузки 6.
Рисунок 2 – Схема планетарног редуктор 1- подвижное центральное колесо; 2 - сателлит; 3 - неподвижное центральное колесо; 4 - водило; 5 - привод; 6 - нагрузка; 7, 8, 9 - опоры валов; а, б, в – валы.
Исходные данные:
- радиусы делительных окружностей зубчатых колес 1-3;
- моменты инерции зубчатых колес 1-3 и водила относительно осей вращения;
- моменты инерции привода и нагрузки;
- моменты вращения сателлита 2 при вращении вместе с водилом;
- коэффициенты вязкого трения в опорах 7-9.
Потерями в опоре 9, массой вала «а» и податливостью вала «в» пренебречь.
Сателлит 2 совершает сложное движение: его абсолютное движение складывается из относительного – вокруг собственной оси и переносного – вращение вместе с водилом относительно оси вала «в». Пользуясь методом Виллиса, определим направление переносного движения, т.е направление вращения водило. Допустим, что все звенья передачи 1,2,3 и 4 жестко соединены друг с другом. Сообщая этой жесткой системе переносное вращательное движение вокруг оси вала «в» с угловой скоростью равной скорости вращения водила, но обратно по знаку. При таком движении водило окажется остановленным , в результате относительные угловые скорости зубчатых колес 1 и 3 будут равны:
(1)
(2)
где абсолютные угловые скорости колес 1 и 3; относительные угловые скорости колес 1 и 3; скорость вращения водила.
При планетарная передача превращается в простую зубчатую передачу в которой оси всех зубчатых колес неподвижны.
Тогда передаточное отношение передачи будет иметь вид:
(3)
Преобразуем данное уравнение:
А поскольку колесо 3 является неподвижным , то
(4)
Из (4) следует, что направление вращения водила совпадает с направлением вращения колеса 1, то есть скорости относительного и переносного вращения сателлита 2 противоположны по знаку.
Используя метод аналогий представим механическую систему в виде эквивалентных схем каждой из подсистемы (рисунок 3).
Запишем уравнения для источника :
,
где ;
Запишем уравнение равновесия моментов:
;
,
Аналогично запишем уравнение для , , . Так,
,
где ;
Запишем уравнение равновесия моментов:
;
(5)
Уравнение для :
, где ;
;
. (6)
Уравнение для :
, где ;
;
.
Запишем уравнения для зависимых источников угловых скоростей:
,
где ;
= (7)
,
где ;
=
Составим уравнение равновесия в узлах эквивалентных схем.
1 подсистема:
узел 8: (8)
узел 1: (9)
2 подсистема:
узел 7: (10)
узел 2: (11)
узел 8: (12)
3 подсистема:
узел 3: (13)
4 подсистема:
узел 9: (14)
узел 10: (15)
узел 4: (16)
Полученные уравнения следует привести к алгебраическому виду. Приведение осуществляют, используя следующие компонентные уравнения:
(17)
или (18)
(19)
Получим следующие уравнения:
1 подсистема:
узел 8: (20)
узел 1: (21)
2 подсистема:
узел 7: (22)
узел 2: (23)
узел 8: (24)
3 подсистема:
Узел (25)
4 подсистема:
узел 9: (26)
узел 10: (27)
узел 4: (28)