РефератыЭкономико-математическое моделированиеХаХарактеристика анализа временных рядов

Характеристика анализа временных рядов

Министерство образования и науки Украины


Севастопольский государственный технический университет


Характеристика анализа временных рядов


Методические указания к выполнению лабораторной работы № 4


по дисциплине: Эконометрия


Севастополь, 2000


Анотация


Анализ временных рядов. Методические указания по выполнению лабораторной работы по дисциплине "Эконометрия" / Сост. Букач Б.А. – Севастополь: Изд-во СевГТУ, 2000. – 22 с.


Целью методического указания является обучение студента анализу временных рядов с помощью статистического пакета "Minitab". Методические указания предназначены для студентов экономических специальностей всех форм обучения.


Методические указания содержат описание способов анализа временных данных в статистическом пакете MINITAB.


Содержание


1 Анализ временных рядов


1.1 Анализ тенденции развития (тренда) временного ряда


1.2 Декомпозиция временного ряда. Анализ сезонных колебаний


2 Порядок выполнения работы


3 Варианты заданий к лабораторной работе


4 Контрольные вопросы


Библиография


1
Анализ
временных
рядов


На практике экономист весьма часто сталкивается с тем, что исходные данные, которыми он располагает для выявления той или иной закономерности, представлены в виде временных (динамических) рядов
. Такие ряды описывают изменение некоторой характеристики во времени. Каждый член (уровень) такого ряда связан с соответствующим моментом времени или временным интервалом. Разумеется, уровни ряда должны быть сопоставимыми по своему содержанию. Показатели временных рядов формируются под совокупным влиянием множества длительно и кратковременно действующих факторов и, в том числе, различного рода случайностей. Изменение условий развития явления приводит к более или менее интенсивной смене самих факторов, к изменению силы и результативности их воздействия и, в конечном счете, к вариации уровня изучаемого явления во времени. Лишь в очень редких случаях в экономике встречаются чисто стационарные ряды, т. е. ряды, в которых не наблюдаются систематические изменения в средних значениях уровней, их дисперсиях, и эти характеристики не зависят от начала отсчета времени. В таких случаях вариацию уровней можно изучать с помощью специального раздела математической статистики — теории стационарных процессов. В основном временные ряды, с которыми имеют дело в экономике, не являются стационарными. Последовательность расположения исследуемых данных во времени в таких рядах имеет существенное значение для анализа, т. е. время здесь выступает как один из определяющих для изучаемого явления факторов.


Можно выделить три основные задачи исследования временных рядов.


Первая
из них заключается в описании изменения соответствующего показателя во времени и выявлении тех или иных свойств исследуемого ряда. Для этого прибегают к разнообразным способам: расчету обобщающего показателя изменения уровней во времени — среднего темпа роста; применению различных сглаживающих фильтров, уменьшающих колебания уровней во времени и позволяющих более четко представить тенденции развития; подбору кривых, характеризующих эту тенденцию; выделению сезонных и иных периодических и случайных колебаний; измерению зависимости между членами ряда (автокорреляции). К методам описания какого-либо свойства динамики можно с некоторым основанием отнести и методы проверки наличия или отсутствия долговременных тенденций в ряду.


Второй
важной задачей анализа является объяснение механизма изменения уровней ряда. Для ее решения обычно прибегают к регрессионному анализу.


Наконец, третья
задача ¾ описание изменения временного ряда и объяснение механизма формирования ряда часто используются для статистического прогнозирования, которое в большинстве случаев сводится к экстраполяции обнаруженных тенденций развития.


Анализ временного ряда и последующее прогнозирование его развития может использоваться для:


– планирования в экономике, производстве, торговле;


– управления и оптимизации, протекающих в обществе социально-экономических процессов;


– частичного управления важными параметрами демографических процессов и экологической ниши общества;


– принятия оптимальных решений в бизнесе.


В данной лабораторной работе анализ временного ряда будет производиться в статистическом пакете «MINITAB».


Minitabпозволяет анализировать данные, зависящие от времени (временные ряды), выявлять основные закономерности этих зависимостей и на основе полученных моделей прогнозировать будущие значения для этих рядов.


Minitabвключает следующие основные виды анализа временных рядов:


Trend
Analysis
– анализ линии тренда с использованием четырех типов аппроксимирующих кривых (линейная, квадратическая, экспоненциального роста, логистическая S– кривая).


Decomposition
– классическая декомпозиция временных рядов.


Moving
Average
– вычисление скользящего среднего.


Exp
Smoothing
– экспоненциальное сглаживание временного ряда.


Lag
– смещение рядов на заданное значение.


Autocorrelation
– вычисление автокорреляционной функции.


Cross
Correlation
– вычисление кросскорреляционной функции (взаимная корреляция).


ARIMA
– оценивание модели Бокса-Дженкинса (autoregressiveintegratedmovingaveragemodel) – интегрированная модель авторегрессии и скользящего среднего).


1.1 Анализ тенденции развития (тренда) временного ряда

Понятие тенденция развития не имеет достаточно четкого определения. Обычно тенденцию стремятся представить в виде более или менее гладкой кривой, которой соответствует некоторая функция времени. Эта кривая, назовем ее трендом, характеризует основную закономерность движения во времени и в известной мере (но не полностью) свободна от случайных воздействий. Тренд описывает некоторую усредненную для достаточно протяженного периода наблюдения тенденцию развития во времени. В большинстве случаев полученная траектория связывается исключительно с ходом времени. Предполагается, что с помощью переменной время можно выразить влияние всех основных факторов. Механизм их влияния в явном виде не учитывается.


Для анализа линии тренда в статистическом пакете «MINITAB» необходимо выполнить следующую операцию: Stat
>
Time
Series
>
Trend
Analysis
.
На мониторе появится следующее диалоговое окно (Рисунок 1.1):




Рисунок 1.1 – Диалоговое окно «Анализ линии тренда»


Диалоговое окно включает в себя следующие параметры:


Variable
:
вводится идентификатор (название) столбца в таблице с исследуемым временным рядом.


Model
Type
:
определяется тип модели для аппроксимации тренда временного ряда. В используемой программе Minitabрассматриваются следующие четыре типа моделей:


– Linear– линейная;


– Quadratic– квадратическая;


– Exponentialgrowth– экспоненциального роста;


– S-Curve (Pearl-Reed logistic) – логистическаяS – кривая.


Generate
forecasts
:
Отмечается при необходимости просчитать прогнозные значения, на графике эти точки отмечаются красным цветом.


Number
of
forecasts
:
Вводится число точек для прогноза.


Starting
from
origin
:
Вводится положительное число, определяющее с какой точки начинать считать прогнозные значения. Если эта позиция остается не заполненной Minitabначинает считать прогнозные значения, начиная с последней точки исходного временного ряда. Например, если в примере 1 необходимо сделать прогноз валового сбора хлеба на три года вперед, начиная с последнего года, т. е. с 22-го по счету, то в эту позицию вводят число 21 или оставляют незаполненной и программа подсчитает прогноз в точках 22, 23, 24.


Title
:
Вводится вами заданный заголовок для выводимого графика.


Результат проведенного исследования Minitabвыводит в виде графика, на котором показаны исходные данные, аппроксимирующая их линия тренда и рассчитанные прогнозные значения для этого ряда. В качестве оценок точности
аппроксимации и вычисленного прогноза Minitabиспользует следующие три показателя:


MAPE
– средняя абсолютная ошибка в процентах (mean
absolute
percentage
error

среднее относительное отклонение);


MAD
– среднее абсолютное отклонение (mean
absolute
deviation
);


MSD
s
2
– среднеквадратическое отклонение (mean
squared
deviation
). Близко по своей структуре к среднеквадратической ошибке, но не зависит от числа степеней свободы для разных моделей, поэтому может быть использовано для сравнения точности разных моделей.


Вычисляются эти оценки точности следующим образом:


MAPE
, где ; MAD
; MSD
;


Определение типа модели для аппроксимации тренда временного ряда – одна из наиболее сложных задач анализа временных рядов. Оценка коэффициентов уравнения тренда осуществляется по методу наименьших квадратов
(МНК).


Наиболее часто в экономике при аппроксимации тренда используются следующие виды функций:


линейная , параболическая , степенная ,


экспоненциальная , функция Гомперца , логистическая


.


Пример 1
. Рассмотрим динамику валового сбора хлеба и цен на хлеб в России за 1890 –1910 гг., данные представлены в таблице 1.1. Необходимо определить тип модели для аппроксимации имеющихся временных рядов. В качестве критерия оптимальности выбора модели воспользуемся показателем MSD– среднеквадратическим отклонением.


Таблица 1.1










































































































Годы Валовый сбор хлеба Цены на хлеб Годы Валовый сбор хлеба Цены на хлеб
1. 1890 100 100 12. 1901 135 101
2. 1891 78 131 13. 1902 183 102
3. 1892 91 148 14. 1903 174 103
4. 1893 130 114 15. 1904 191 104
5. 1894 139 89 16. 1905 165 108
6. 1895 130 84 17. 1906 143 122
7. 1896 139 85 18. 1907 161 155
8. 1897 122 83 19. 1908 165 168
9. 1898 143 108 20. 1909 204 152
10. 1899 161 109 21. 1910 200 133
11. 1900 152 102

В статистическом пакете Minitabрассматриваются следующие четыре типа моделей: линейная, квадратическая, экспоненциального роста, логистическая S– кривая. Выполним расчеты по каждой из моделей для обоих временных рядов и представим данные расчетов в таблице 2.


Таблица 1.2
























Вид модели MSD
Валовый сбор хлеба Цены на хлеб
линейная 296.219 460.058
квадратическая 272.670 258.870
экспоненциального роста 331.586 452.138
логистическая S – кривая 281.557 нет данных

Наиболее точно описывают имеющиеся данные квадратическая модель, так как среднеквадратическое отклонение (MSD) у этой модели наименьшее
. Уравнения тренда, описывающие данные временные ряды имеют вид:


– для валового сбора хлеба:


Yt= 84.5263 + 7.88980*t- 0.148474*t2


– для цены на хлеб:


Yt = 130.932 - 7.72938*t + 0.433980*t2


В результате выполнения операции: Stat
>
Time
Series
>
Trend
Analysis
и заполнения диалогового окна на экране появятся графики, которые показаны на рисунке 1.2. На графиках видно, что выбранные нами модели тренда достаточно точно описывают имеющиеся временные ряды.




Рисунок 1.2 – Анализ трендов валового сбора хлеба и цены на него


1.2 Декомпозиция временного ряда. Анализ сезонных колебаний

При анализе временного ряда его изменчивость можно разделить на закономерную
(детерминированную) и случайную
составляющие. Для многих рядов в экономике причины, порождающие их закономерные составляющие не ясны. Тем не менее их совокупное влияние может быть устойчивым в течении достаточно длительных промежутков времени. Это обеспечивает возможность прогноза для подобных временных рядов.


Составная часть временного ряда, остающаяся после выделения из него закономерных (детерминированных) компонент, представляет собой случайную, нерегулярную компоненту. Она является обязательной составной частью любого временного ряда в экономике, так как случайные отклонения неизбежно сопутствуют любому экономическому явлению. Если систематические компоненты временного ряда определены правильно, что как раз и составляет одну из главных целей при разработке моделей временного ряда, то остающаяся после выделения из временного ряда этих компонент так называемая остаточная последовательность (ряд остатков) будет случайной компонентой ряда.


Случайная компонента ряда обладает следующими свойствами:


– случайностью колебаний уровней остаточной последовательности;


– соответствием распределения случайной компоненты нормальному закону распределения;


– равенством математического ожидания случайной компоненты нулю;


– независимостью значений уровней случайной последовательности, то есть отсутствием существенной автокорреляции.


Проверка адекватности
моделей временных рядов основана на проверке выполняемости у остаточной последовательности указанных четырех свойств. Если не выполняется хотя бы одно из них, модель признается неадекватной; при выполнении всех четырех свойств модель адекватна. Данная проверка осуществляется с использованием ряда статистических критериев


Закономерную
или детерминированную составляющую при анализе экономического временного ряда обычно разбивают на три составляющие
: тренд,
сезонную компоненту
и циклическую компоненту
.


Наличие первых двух составляющих временного ряда можно приблизительно определить визуально, построив график временного ряда. На рисунке 1.3 показаны различные виды временных рядов с трендом и сезонной составляющей.



Рисунок 1.3 – Различные виды временных рядов


На рисунке 1.3 введены следующие обозначения:


1 – временной ряд не содержит сезонной составляющей;


2 – временной ряд содержит аддитивную сезонную составляющую;


3 – временной ряд содержит мультипликативную сезонную составляющую;


А – временный ряд не содержит тренда;


В – временной ряд содержит аддитивный тренд;


С – временной ряд содержит мультипликативный тренд (при увеличении данных, увеличивается величина сезонных отклонений).


(Ниже в этом пункте будет рассмотрены понятия аддитивной и мультипликативной переменных временного ряда).


Циклическая компонента
временного ряда описывает длительные периоды относительного подъёма и спада. Она состоит из циклов, которые меняются по амплитуде и протяженности. Выделение в экономических временных рядах циклической компоненты связано с тем, что экономическая активность не растет (или спадает) постоянными темпами. Она состоит из периодов относительных подъёмов и спадов. Считается, что причиной циклических изменений в экономических показателях является взаимодействие спроса и предложения. Играют роль и другие факторы: рост и истощение ресурсов, увеличение размеров капитала, используемого в бизнесе, продолжительно действующие неблагоприятные (либо благоприятные) для тех или иных отраслей сельского хозяйства погодные условия, изменения в правительственной финансовой и налоговой политике и т. п. Влияние всех этих факторов приводит к тому, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда. Поэтому для ее анализа обычно приходиться привлекать дополнительную информацию в виде других временных рядов, которые оказывают влияние на изучаемый ряд, например, учитывать информацию типа налоговых льгот, перенасыщенности рынка и т. п.


В ходе выполнения данной лабораторной работы необходимо будет учитывать влияние лишь двух составляющих: тренда и сезонной компоненты.


К сезонным
относятся такие явления, которые обнаруживают в своем развитии определенные закономерности более или менее повторяющиеся из месяца в месяц, из квартала в квартал. Под сезонностью иногда понимают неравномерность производственной деятельности в отраслях промышленности, связанных с переработкой с/х сырья, поступления которого зависит от времени года.
Кроме того, сезонность может возникать из-за сезонного характера спроса на товары, производимые промышленностью и т. д. Как бы ни проявлялась сезонность, она наносит большой ущерб народному хозяйству, который заключается в неравномерном использовании оборудования и рабочей силы, неравномерной постановке сырья и загрузке транспорта в отраслях, связанных с сезонным производством. Изучение сезонных колебаний необходимо для более ритмичной работы предприятий.


Статистическое исследование сезонности ставит следующие задачи: численно выразить проявление сезонных колебаний; выявить их силу и характер в условиях отдельных отраслей народного хозяйства; вскрыть факторы, вызывающие сезонные колебания; найти экономические последствия проявления сезонности. Известно несколько способов
исследования сезонных колебаний: способ простых средних, способ относительных чисел, способ Персонса, способ расчета сезонных волн, базирующийся на определении тенденции (методом скользящей средней и методом наименьших квадратов).


Индексы сезонности
являются показателями, характеризующими результаты сравнения фактических уровней данного месяца или квартала с уровнями, вычисленными при выявлении основной тенденции для того же месяца или квартала.


Расчет сезонного индекса может быть произведен следующим образом. Предположим, что рассматриваемый временной ряд x1, … xnможет быть описан аддитивной моделью.
Пусть p– период последовательности st. Для этого сначала мы должны оценить тренд . Затем для каждого сезона i, 1 ip, необходимо рассмотреть все относящиеся к нему разности: xi– . Каждое из этих отклонений xiот можно рассматривать как результат влияния сезонных изменений. Усреднение этих разностей дает нам оценку сезонной компоненты si. В качестве простейшей оценки можно взять простое среднее
, т.е.:


для i = 1,…, p


Сезонный индекс для мультипликативной
модели
вычисляется по другой формуле.


Minitabпроизводит классическую декомпозицию временного ряда, используя мультипликативную или аддитивную модели. С помощью этой процедуры временной ряд разделяется на три составляющие: тренд
, сезонные колебания
и ошибку
.


Для работы с этим видом анализа необходимо набрать: Stat
>
Time
Series
>
Decomposition
.
В результате выполнения этой процедуры на мониторе появится следующие диалоговое окно (рисунок 1.4).



Рисунок 1.4 – Вид диалогового окна "Анализ сезонной декомпозиции"


Диалоговое окно включает в себя следующие параметры:


Variable
:
выбирается столбец, содержащий исходный временной ряд.


Seasonal
Length
:
Длина сезонного цикла. Вводится целое число большее 2.


Model
Type
:
Выбирается тип модели:


мультипликативная модель.
Используется, если сезонные колебания зависят от уровня данных. В этом случае предполагается, что если данные увеличиваются, то увеличивается и величина сезонных отклонений. Многие временные ряды соответствуют этой модели. Модель имеет следующий вид


yt
=
Trend
*
Seasonal
*
Error


аддитивная модель
имеет следующий вид:


yt
=
Trend
+
Seasonal
+
Error


Model
Components
:
Выбор компонентов присутствующих в модели:


– Trendplusseasonal: Отмечается, если исходные данные содержат тренд и сезонную составляющую.


– Seasonalonly: Отмечается, если при анализе тренд не учитывается. Если данные содержат тренд, но это не указано, то оценки сезонных индексов могут быть не верными.


Initial
seasonal
period
:
По умолчанию Minitabсчитает, что исходные данные начинаются с первого периода – 1. Если исследуются месячные данные, и они начинаются с июня, то тогда указывается 6 месяц.


Generate
forecasts
:
Отмечается, если необходимо сделать прогноз. Прогнозные значения отмечаются на графике красным цветом.


Number
of
forecasts
:
Вводится число прогнозных значений.


Starting
from
origin
:
Используется аналогично диалогу в анализе тренда.


Title
:
Можно ввести свое название графика.


Minitabпри декомпозиции:


- оценивает линию тренда методом наименьших квадратов;


- удаляет тренд, деля на тренд или вычитая его из временного ряда в зависимости от используемой модели (соответственно мультипликативной или аддитивной);


- сглаживает преобразованные данные, используя метод скользящего среднего
с параметром сглаживания равным длине сезонного цикла. Если сезонный цикл четный, то используется двухшаговая процедура сглаживания методом скользящего среднего;


- временной ряд без тренда делится или из него вычитается полученный сглаженный ряд, чтобы получить сезонную компоненту. С помощью полученных значений вычисляются сезонные индексы, которые позволяют оценить влияние сезонных колебаний.


Рассмотрим на примере производства молока процедуру декомпозиции временного ряда (данные представлены в таблице 1.2).


Таблица 1.2 – Производство молока в России за 1992–19

96 гг. (тыс. тонн в месяц)



























































































Месяц год
1992 г.
1993 г.
1994 г.
1995 г.
1996 г.
январь
2015 1759 1510 1172 1038
февраль
2123 1773 1484 1226 1104
март
2624 2361 1988 1651 1439
апрель
2891 2649 2211 1859 1521
май
3335 3203 2559 2392 1827
июнь
4071 3936 3209 2864 2446
июль
4040 3861 3204 2714 2369
август
3392 3321 2687 2420 2081
сентябрь
2467 2438 2031 1925 1577
октябрь
2092 1760 1506 1338 1081
ноябрь
1494 1299 1050 984
декабрь
1562 1345 1054 1020

Заполним диалоговое окно, изображенное на рисунке 1.4, следующим образом:


Variable
:
1992–96


Seasonal
Length
:
12


Model
Type
:
мультипликативная модель (для выбора типа модели можно использовать рисунок 1.3. Из графика анализирующего временной ряд на наличие тренда (рисунок 1.5) видно, что величина сезонных колебаний пропорциональна среднему уровню производства. Поэтому для описания сезонных колебаний следует использовать мультипликативную модель).


Model
Components
:
Trend
plus
seasonal
(тренд и сезонная составляющая)


Initial seasonal period:
1 (данныеначинаютсясянваря)


Generate forecasts:


Number
of
forecasts
:
6


В результате выполнения этой операции на экране появятся следующие графики и расчеты. В окне Session
появятся результаты вычисления сезонных индексов и значения прогнозных показателей на полгода вперед, а также уравнение тренда и его точность:


Time
Series
Decomposition
(Декомпозиция временного ряда)


Data1992-96 (Название анализируемых данных)


Length58.0000 (Длина временного ряда)


NMissing0 (Количество ошибок в данных)


Trend Line Equation (Уравнениетренда)


Yt = 2841.10 - 23.6304*t


Seasonal Indices (Сезонныеиндексы)









































Period Index
1 0.654509
2 0.678928
3 0.909029
4 1.02617
5 1.27273
6 1.58137
7 1.54385
8 1.35862
9 1.02653
10 0.777468
11 0.570636
12 0.600173

AccuracyofModel(Оценка точности полученного уравнения тренда)


MAPE: 4.1


MAD: 85.0


MSD: 10808.6


Forecasts(Прогнозные значения)






























Row Period Forecast
1 59 826.68
2 60 855.31
3 61 917.31
4 62 935.52
5 63 1231.15
6 64 1365.59

При проведении декомпозиции Minitabтакже генерирует три набора графиков (рисунки 1.5 – 1.7).


На рисунке 1.5 изображены исходные данные, оцененная линия тренда, оцененная линия тренда с сезонными колебаниями (predicted
) и прогнозные значения.


На рисунке 1.6 изображены отдельные графики для каждой компоненты: исходные данные, данные без тренда, данные без сезонных колебаний и график ошибки – данные без тренда и без сезонных колебаний.


Эта группа графиков показывает как сезонные колебания влияют на временной ряд. Сюда входят графики:


- сезонных индексов (Seasonal
Indices
)
,


- график процента дисперсии обусловленной сезонными колебаниями (Percent
Variation
,
by
Seasonal
Period
)
,


- график разброса исходных данных за рассматриваемый сезонный период (Original
Data
,
by
Seasonal
Period
)
,


- график разброса остатков за этот период (Residuals
,
by
Seasonal
Period
)
.



Рисунок 1.5 – График временного ряда



Рисунок 1.6 – Результаты компонентного анализа при декомпозиции временного ряда.



Рисунок 1.7 – Результаты сезонного анализа при декомпозиции временного ряда


В результате проведенного анализа можно сделать следующие выводы
:


1. Визуальный анализ графика ряда показывает, что производство молока имеет тенденцию к сокращению. Это может быть обусловлено сокращением поголовья молочного стада и общим снижением производства сельскохозяйственной продукции.


2. Временный ряд подвержен сильным сезонным колебаниям с максимумом производства в летние месяцы (апрель – сентябрь) и минимумом – в зимние (октябрь – март). При этом величина сезонных колебаний пропорциональна среднему уровню производства.


Следовательно, потребителю молочных продуктов необходимо быть готовым к сезонным изменениям уровня цен на продукцию: в летние месяцы — снижение цены, в зимние — возрастание.


2 Порядок выполнения работы

1 В соответствии с вариантом задания создать таблицу исходных данных. 2 Выполнить процедуру анализа временного ряда:


– определить уравнение тренда, который наиболее точно описывает данный временной ряд;


– провести полную декомпозицию временного ряда, определить сезонные индексы;


– сделать прогноз на полгода
вперед.


3 Переписать все полученные данные в отчет.


4 Сделать выводы об исследуемом временном ряде.


3 Варианты заданий к лабораторной работе

Вариант № 1 Поквартальные индексы розничной цены на овощи в Великобритании (1951 – 1958 гг.) в фунтах.



















































1951
1952
1953
1954
1955
1956
1957
1958
1 квартал
295,0 324,7 372,9 354,0 333,7 323,2 304,3 312,5
2 квартал
317,5 323,7 380,9 345,7 323,9 342,9 285,9 336,1
3 квартал
314,9 322,5 353,0 319,5 312,8 300,3 292,3 295,5
4 квартал
321,4 332,9 348,9 317,6 310,2 309,8 298,7 318,4

Вариант № 2 Помесячная продажа пива в Австралии (1991 – 1995 гг.) млн. л.

























































































Месяц
1991
1992
1993
1994
1995
Январь
164
147
139
151
138
Февраль
148
133
143
134
136
Март
152
163
150
164
152
Апрель
144
150
154
126
127
Май
155
129
137
131
151
Июнь
125
131
129
125
130
Июль
153
145
128
127
119
Август
146
137
140
143
153
Сентябрь
138
138
143
143
Октябрь
190
168
151
160
Ноябрь
192
176
177
190
Декабрь
192
188
184
182

Вариант № 3 Данные ежемесячного объёма реализации товара А (в тыс. грн.). После выполнения процедуры декомпозиции временного ряда, предложите свои варианты, чем может в действительности являться товар А.





























































































Месяц
1995
1996
1997
1998
1999
Январь
742
741
896
951
1030
Февраль
697
700
793
861
1032
Март
776
774
885
938
1126
Апрель
898
932
1055
1109
1285
Май
1030
1099
1204
1274
1468
Июнь
1107
1223
1326
1422
1637
Июль
1165
1290
1303
1486
1611
Август
1216
1349
1436
1555
1608
Сентябрь
1208
1341
1473
1604
1528
Октябрь
1131
1296
1453
1600
1420
Ноябрь
971
1066
1170
1403
1119
Декабрь
783
901
1023
1209
1013

Вариант № 4 Количество пассажиров, перевезенных авиа компанией "PanAmerican", в месяц (в тыс.)
















































































Месяц
1969
1970
1971
1972
Январь
112
115
145
171
Февраль
118
126
150
180
Март
132
141
178
193
Апрель
129
135
163
181
Май
121
125
172
183
Июнь
135
149
178
218
Июль
148
170
199
230
Август
148
170
199
242
Сентябрь
136
158
184
209
Октябрь
119
133
162
191
Ноябрь
104
114
146
172
Декабрь
118
140
166
194

Вариант № 5 Данные ежемесячного реализации товара В. После выполнения процедуры декомпозиции временного ряда, предложите свои варианты, чем может в действительности являться товар В.





























































































Месяц
1991
1992
1993
1994
1995
Январь
53,5
52,1
52,3
53,3
54,8
Февраль
53,0
51,5
51,5
53,1
54,2
Март
53,2
51,5
51,7
53,5
54,6
Апрель
52,5
52,4
51,5
53,5
54,3
Май
53,4
53,3
52,5
53,9
54,8
Июнь
56,5
55,5
57,1
57,1
58,1
Июль
65,3
64,2
63,6
6,7
68,1
Август
70,7
69,6
68,6
69,4
73,3
Сентябрь
66,9
69,3
68,9
70,3
75,5
Октябрь
58,2
58,5
60,1
62,6
66,4
Ноябрь
55,3
55,3
55,6
57,9
60,5
Декабрь
53,4
53,6
53,9
55,8
57,7

Вариант № 6 Дан ежемесячный объём реализации товаров торгового предприятия (в тыс. грн.). После выполнения процедуры декомпозиции временного ряда, предложите свои варианты, какие виды товаров может реализовывать предприятие.





























































































Месяц
1995
1996
1997
1998
1999
Январь
322
322
330
348
361
Февраль
317
318
326
345
354
Март
319
320
329
349
357
Апрель
323
326
337
355
367
Май
327
332
345
362
376
Июнь
328
334
350
367
381
Июль
325
335
351
366
381
Август
326
336
354
370
383
Сентябрь
330
335
355
371
384
Октябрь
334
338
357
375
387
Ноябрь
337
342
362
380
392
Декабрь
341
348
366
385
396

4 Контрольные вопросы


1. Какие три основные задачи анализа временных рядов?


2. Где используются в экономике результаты анализа временных рядов?


3. Какие основные математические функции используются при аппроксимации временных рядов в экономике?


4. Какой критерий в данной работе используется для сравнения точности моделей?


5. На какие составляющие разбивается временной ряд при его декомпозиции?


6. Какие факторы в экономике влияют на наличие сезонной и циклической составляющей временного ряда?


7. Какие типы моделей используются при декомпозиции временного ряда?


8. Какими свойствами должна обладать случайная составляющая?


Библиография

1 Г.С. Кильдышев, А.А. Френкель. Анализ временных рядов и прогнозирование. — М.: Статистика. 1973 — 101 с.


2 М. Кендалл, А. Стьюарт. Многомерный статистический анализ и временные ряды. — М.: Наука, 1976. — 736 с.


3 Ю.Н. Тюрин, А.А. Макаров. Статистический анализ данных на компьютере / Под ред. В.Э. Фигурнова — М.: ИНФРА–М, 1998. — 528 с.


4 Makridakis S. Forecasting: methods and applications. / Makridakis S., Wheelwright S, Hyndman R. — New York: John Wiley & Sons, Inc., 1998. — 642 c.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Характеристика анализа временных рядов

Слов:4515
Символов:51005
Размер:99.62 Кб.