1. Определить нижнюю и верхнюю цену игры, заданной платежной матрицей
Имеет ли игра седловую точку?
Решение:
Найдем по каждой строчке платежной матрицы минимальное число αi
= min (αi
1
, αi
2
, αi
3
) – это гарантированный выигрыш игрока А, при выборе им соответствующей стратегии. Чтобы получить максимально возможный гарантированный выигрыш, игрок А должен выбрать ту стратегию, для которой αij
имеет максимальное значение – α = max(α1
, α2
, α3
) – это нижняя цена игры.
Для игрока В выберем по каждому столбцу максимальное число βj
= max(α1
j
, α2
j
, α3
j
) – это гарантированный проигрыш игрока В при выборе им стратегии Вj
. Найдем минимальное из этих чисел β = min (β 1
, β 2
, β 3
) – это верхняя цена игры. Занесем полученные данные в таблицу 1.
Нижняя цена игры α = 8 равна верхней цене игры β = 8. Значит, игра имеет седловую точку. Для игрока А оптимальная стратегия – А1
, для игрока В оптимальная стратегия – В1
.
Ответ:
α = β = 8, игра имеет седловую точку, оптимальные стратегии (А1
, В1
).
Таблица 1 – Определение цены игры платежной матрицы
В1
|
В2
|
В3
|
||
А1
|
8 | 9 | 9 | α1
= min (8, 9, 9) = 8 |
А2
|
6 | 5 | 8 | α2
= min (6, 5, 8) = 5 |
А3
|
3 | 4 | 5 | α3
= min (3, 4, 5) = 3 |
β1
β1
|
β2
β2
|
β3
β3
|
α = max(8, 5, 3) = 8 β = min (8, 9, 9) = 8 |
2. Решить графически игру, заданную платежной матрицей
Решение:
Дана игра 4 х 2 , то есть у игрока А имеется 4 стратегии, а у игрока В – 2. Поэтому, будем решать игру для игрока В. Построим оси: ОХ – на ней будем отмечать вероятности, с которыми игрок использует ту или иную стратегии, и ОУ – на ней будем откладывать цену игры. На расстоянии единица от оси ОУ проведем еще ось параллельную ей, как показано на рисунке 1.
Если игрок А выбирает стратегию А1
, то игрок В, используя свои стратегии с вероятностями (q1
, q2
), будет проигрывать, в среднем, q1
∙α11
+q2
∙α12
= q1
∙(-3) +q2
∙(-4). Отметим на оси ОУ α11
= -3, а на оси ей параллельной α12
= -4 и соединим эти точки прямой линией – она показывает, сколько, в среднем, получает игрок В, если А использует стратегию А1
, а В чередует стратегии В1
и В2
с некоторыми вероятностями (q1
, q2
). Аналогично отмечаем на оси ОУ точку -1, а на параллельной ей оси – точку 2 и соединяем отрезком. Получаем линию, показывающую, сколько, в среднем, получает игрок В, если А выбрал стратегию А2
. Точно также для А3
и А4
.
Для игрока В надо выбрать верхнюю границу, так как он должен рассчитывать, что А выберет ту стратегию, которая соответствует наибольшему проигрышу для игрока В. На рисунке 1 это ломанная А3
КА2
, выделенная толстой линией. Игроку В следует выбрать ту смешанную стратегию, которая соответствует наименьшему проигрышу для В – точка К. Это точка пересечения прямых, соответствующих стратегиям А3
и А2
. Выпишем уравнения этих прямых.
Прямая (А3
А3
) проходит через точки с координатами (0;2) и (1;-4). Уравнение этой прямой запишется в следующем виде:
Уравнение прямой (А2
А2
), проходящей через точки (0;-1) и (1;2), запишется в следующем виде:
Рисунок 1 –Графическое решение
Точка К – точка пересечения этих прямых, имеет координаты, удовлетворяющие системе:
Решение системы:
Следовательно, цена игры ν = 0, оптимальная стратегия для игрока В:
Для игрока А, стратегии А1
и А4
будут не активными, игроку А не выгодно их использовать. Максимально возможный выигрыш, равный цене игры ν = 0, игрок А будет получать, используя стратегии А2
и А3
. Найдем оптимальную смешанную стратегию для игрока А из следующей системы, учитывая, что А1
и А4
не активные стратегии, то есть р1
= р4
= 0:
Ответ:
Цена игры ν = 0, оптимальные стратегии игроков
3. Решить геометрически следующую задачу линейного программирования:
при ограничениях:
Решение:
Построим область ограничений. Строим прямую (1): x1
– 4x2
- 4 = 0 по двум точкам, координаты которых удовлетворяют уравнению: (8; 1), (4; 0), как показано на рисунке 2. Проверяем, какая полуплоскость удовлетворяет неравенству , для этого подставим значение произвольной точки (0; 0) в это неравенство, получим - выполняется. Аналогичным способом строим прямые (2): и (3): , выделяем «бородой» области значений x1
, x2
, удовлетворяющие условиям и . На рисунке 2 изображена область, удовлетворяющая представленной в условиях задачи системе. Заметим, что и одно из неравенств системы - , тогда, очевидно, функция F принимает значения интервала , но , тогда Fmax
= .
Ответ:
Fmax
= .
Рисунок 2 – Графическое решение
4. Для выпуска двух видов продукции А и В предприятие использует 4 вида ресурсов, все данные представлены в следующей таблице:
Вид ресурса | Расход ресурсов для выпуска одного изделия | Наличие ресурса | |
А | В | ||
Рабочая сила | 1 | 3 | 3 |
Сырье | 6 | 3 | 24 |
Оборудование | 2 | 5 | 20 |
Производственные ресурсы | 2 | 2 | 10 |
Прибыль от реализации единицы продукции А и В составляет 50 и 70 ДЕ, соответственно. Предприятие может нанять людей на работу, а увольнять людей не разрешается. Составить план выпуска продукции, чтобы прибыль от ее реализации была максимальной. Сколько человек придется нанять?
Решение:
Обозначим x1
, x2
– число единиц продукции соответственно А и В, запланированных к производству. По условию для их изготовления потребуется (1∙ x1
+ 3∙ x2
) единиц ресурса «Рабочая сила», (6∙ x1
+ 3∙ x2
) единиц ресурса «Сырье», (2∙ x1
+ 5∙ x2
) единиц ресурса «Оборудование», (2∙ x1
+ 2∙ x2
) единиц ресурса «Производственные ресурсы». Так как потребление всех этих видов ресурсов не должно превышать наличие ресурсов, то связь между потреблением ресурсов и их запасами выразится системой неравенств:
где а ≥ 3 и а – целое число (количество работников).
Суммарная прибыль стремиться к максимальному значению:
Все значения x1
и x2
лежат в I четверти, а функция F – луч, исходящий из точки (0; 0) под углом α к оси ОX1
, где т.е. - функция прибыли F. Строим графическое решение для неравенств (2): , (3): , (4): , как это показано на рисунке 3.
Максимально возможная прибыль из графического решения в точке К, координаты которой находим из системы:
С учетом, x1
, x2
– целые числа (только конечный продукт можно продать и получить прибыль), находим: при х1
= х2
= 2 возможно получение максимальной прибыли Подставив х1
= х2
= 2 в неравенство (1): , получим ,т.е. а = 8. Необходимо дополнительно нанять 8 – 3 = 5 человек.
Ответ:
Максимально возможная прибыль 240 ДЕ возможна при производстве изделий А – 2шт. и изделий В – 2 шт., при этом придется дополнительно нанять 5 работников.
Рисунок 3 – Графическое решение
5. Построить граф состояний следующего случайного процесса: система состоит из двух аппаратов по продаже билетов, каждый из которых в случайный момент времени может быть либо занятым, либо свободным.
Решение:
Система может находиться в четырех состояниях, так как у каждого аппарата по продаже билетов есть два состояния (быть занятым или свободным). Пусть S0
– оба аппарата заняты; S1
– 1-ый занят, 2-ой свободен; S2
– 1-ый свободен, 2-ой занят; S3
– оба аппарата свободны. Построим граф состояний, отметив на нем все возможные состояния кругами, а возможные переходы из состояния в состояние обозначим стрелками. Получаем, что переход из S0
в S3
возможен либо через S1
, либо через S2
, либо напрямик, как показано на рисунке 4.
Рисунок 4 – Граф состояний аппаратов по продаже билетов
6. Найти предельные вероятности для системы S, граф которой изображен на рисунке.
Решение:
В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют. Их можно найти из уравнений Колмогорова, составив систему по данному размеченному графу состояний, по следующему правилу:
Слева в уравнении стоит предельная вероятность данного состояния
pi
, умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа – сумма произведений интенсивностей всех потоков, входящих в данное состояние, на вероятности тех состояний, из которых эти состояния выходят.
Кроме этого надо учитывать, что сумма всех вероятностей данной конечной системы равна единице. Составим уравнения для состояний S1
и S2
(уравнение для состояния S0
– «лишнее»):
Ответ:
Система примерно 66,67% времени пребывает в состоянии S0
, 25% - в состоянии S1
и 8,33% времени находится в состоянии S2
.
7. Найти валовой выпуск для сбалансированной многоотраслевой экономики в модели Леонтьева, если дана матрица прямых затрат А и вектор конечного потребления У:
Решение:
Для сбалансированной многоотраслевой экономики выполняется следующее соотношение:
где | Х | - | вектор валового выпуска; |
У | - | вектор конечного потребления; | |
А | - | матрица прямых затрат. |
Выразим валовой выпуск через конечное потребление и матрицу затрат:
Находим матрицу, обратную к (Е – А):
Найдем валовой выпуск:
Х =
Ответ:
Валовой выпуск равен (811,3; 660,4).
*При решении задач использовался источник:
Алесинская Т.В. Учебное пособие по решению задач по курсу "Экономико-математические методы и модели". - Таганрог: Изд-во ТРТУ, 2002. - 153 с.