Содержание
Введение..................................................................................................
1. Классификация СМО и их основные элементы ...............................
2. Обслуживание с ожиданием..............................................................
3. Пример использования СМО с ожиданием......................................
Расчеты...................................................................................................
Выводы...................................................................................................
Список литературы................................................................................
Приложение 1.........................................................................................
Приложение 2.........................................................................................
ВВЕДЕНИЕ
Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропортах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и оборудования, на складах снабженческо-сбытовых организ
аций в ожидании разгрузки или погрузки транспортных средств. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Из
учением таких ситуаций з
анимается теория массового обслуживания.
В теории систем массового обслуживания (в дальнейшем просто -CMÎ) обслуживаемый объект называют требованием.
В общем случае под требованием обычно понимают з
апрос на удовлетворение некоторой потребности, например, раз
говор с абонентом, посадка самолета, покупка билета, получение материалов на складе.
Средства, обслуживающие требования, называютсяобслуживающими устройствами
иликаналами обслужи
вания
.
Например, к ним относятся каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки
на базах и складах.
Совокупность однотипных обслуживающих устройств называетсяîáñëóæèâàþù
èìè óñòðîé
ñòвами.
Такими системами могут быть телефонные станции, аэродромы, билетные кассы, ремонтные мастерские, склады и баз
ы снабженческо-сбытовых организаций и т.д.
В теории СМО
рассматриваются такие случаи, когда поступление требований происходит через случайные промежутки времени, а продолжительность обслуживания требований не является постоянной, т.е. носит случайный характер. В силу этих причин одним из
основных методов математического описания СМО является аппарат теории случайных проц
ессов .
Основной задачей теории СМО является изучение режима функционирования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания. Так, одной из
характеристик обслуживающей системы является время пребывания требования в очереди. Очевидно, что это время можно сократить з
а счет увеличения количества обслуживающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время бездействия обслуживающего устройства из-з
а отсут
ствия требований на обслуживание, что также является негативным явлением. Следовательно, в теории СМО воз
никают з
адачи оптимизации:
каким образ
ом достичь определенного уровня обслуживания (максимального сокращения очереди или потерь требований) при минимальных затратах, связанных с простоем обслуживающих ус
тройств.
Раздел І.
Классификация СМО и их
основные элементы
СМО классифицируются на разные группы в зависимости от состава и от времени пребывания в очереди до начала обслуживания, и от дисциплины обслуживания требований.
По состав
у СМО бываютодноканальные
(с одним обслуживающим уст
ройством) имногоканальными
(с большим числом обслуживающих устройств).
Многоканальные системы могут состоят
ь из обслужива
ющих устройств как одинаковой, так и разной производительности.
По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:
1) с неограниченным временем ожидания (с ожиданием),
2) с отказами;
3) смешанного типа.
В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится.
В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции.
В системах смешанного типа поступившее требование, застав все (устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему.
В системах с определенной дисциплиной обслуживания
поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.
Основными элементами СМО являются:входящий поток требований, очередь требований, обслуживающие устройства, (каналы) и выходящий поток требований.
Изучение СМО начинается с анализа входящего потока требований. Входящий поток требований представляет собой совокупность требований, которые поступают в систему и нуждаются в обслуживании. Входящий поток требований изучается с целью установления закономерностей этого потока и дальнейшего улучшения качества обслуживания.
В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов. Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также интервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными.
Среднее число требований, поступающих в систему обслуживания за единицу времени, называетсяинтенсивностью поступл
ения требо
ваний
и
определяется следующим соотношением:
где Т
-
среднее значение интервала между поступлением очередных требований.
Для многих реальных процессов поток требований достаточно хорошо описывается законом распределения Пуассона. Такой пот
ок называетсяпростейшим
.
Простейший поток обладает
такими важными свойствами:
1)
Свойством стационарности,
которое выражает неизмен
ность вероятностного режима потока по времени. Это значит, что чис
ло т
ребований, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным. Например, число вагонов, поступающих под погруз
ку в среднем в сутки должно быть одинаковым для различных периодов времени, к примеру, в начале и в конце декады.
2)
Отсутствия последействия,
которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.
3)
Свойством ординарности,
которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).
При простейшем потоке требований распределение требований, поступающих в систему подчиняются закону распределения Пуассона:
вероятность того, что в обслуживающую систему за время t поступит именноk
требований:
где. -
среднее число требований, поступивших на обслуживание в единицу времени.
На практике условия простейшего потока не всегда строго выполняются. Часто имеет место нестационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца). Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами. Однако в целом пуассоновский закон распределения с достаточно высоким приближением отражает многие процессы массового обслуживания. Почему такое предположение в ряде важных случаев оказывается верным, дает ответ общая теорема А.Я.Хинчина, которая представляет исключительную теоретическую и практическую ценность. Эта теорема имеет место в случае, когда входящий поток можно представить в виде суммы большого числа независимых потоков, ни один из которых не является сравнимым по интенсивности со всем суммарным потоком. Приведем “не строгую” формулировку этой теоремы (полная формулировка и доказательство приведены в).
Теорема (А.Я.Хинчин)
Если входящий поток представляет собой сумму большого числа независимых между собой стационарных и ординарных потоков, каждый из которых вносит малый вклад в общую сумму, то при одном дополнительном условии аналитического характера (которое обычно выполняется на практике) поток близок к простейшему.
Применение этой теоремы на практике можно продемонстрировать, на следующем примере: поток судов дальнего плавания в данный грузовой порт, связанный со многими портами мира, можно считать близким к простейшему. Это дает нам право считать поток прибытия судов в порт распределенным согласно процесса Пуассона.
Крометогî, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков з
акона распределени
я Пуассона является равенство математического ожидания случайной величин
ы и дисперсии этой же величины, т.е.
Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время
обслуживания.
Время обслуживания одного требования()-
случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку) .
Случайная величина
полностью характеризуется законом распределения, который определяется на основе статистических испытаний.
На практике чаще всего принимают гипотезу о показательном законе распределения
времени обслуживания.
Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.
При показательном законе распределения времени обслуживания вероятность события, что время обслуживания продлиться не более чем t, равна:
гдеv
- интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:
, (1)
где-
среднее время обслуживания одного требования одним обслуживающим устройством.
Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:
где n - количество обслуживающих устройств.
Важным параметром СМО является коэффициент загрузки ,
который определяется как отношение интенсивности поступления требований к интенсивности обслуживания v.
(2)
гдеa
-
коэффициент загрузки; -
интенсивность поступления требований в систему; v
-
интенсивность обслуживания одного требования одним обслуживающим устройством.
Из (1) и (2) получаем, что
Учитывая, что -
интенсивность поступления требований в систему
в единицу времени, произведение показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.
Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегося
или стационарного режима работы
СМО) :
.
В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.
Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки :
Раздел
ІІ.
Обслуживание с ожиданием
1.
Постановка задачи.
СМО с ожиданием распространены наиболее широко. Их можно разбить на 2 большие группы - разомкнутые
и замкнутые
. Эти системы определяют так же, как системы с ограниченным входящим потоком.
К замкнутым
относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на подналадку.
В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.
Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми
. Примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требований можно считать неограниченным.
Мы рассмотрим здесь классическую задачу теории массового обслуживания в тех условиях, в каких она была рассмотрена и решена К.Эрлангом. на n одинаковых приборов поступает простейший поток требований интенсивности . Если в момент поступления имеется хотя бы один свободный прибор, оно немедленно начинает обслуживаться. Если же все приборы заняты, то вновь прибывшее требование становится в очередь за всеми теми требованиями, которые поступили раньше и ещё не начали обслуживаться. Освободившийся прибор немедленно приступает к обслуживанию очередного требования, если только имеется очередь. Каждое требование обслуживается только одним прибором, и каждый прибор обслуживает в каждый момент времени не более одного требования. Длительность обслуживания представляет собой случайную величину с одним и тем же распределением вероятностей F(x). Предполагается, что при x0.
где - постоянная.
Только что описанная задача представляет значительный прикладной интерес, и результаты, с которыми мы познакомимся, широко используются для практических целей. Реальных ситуаций, в которых возникают подобные вопросы, исключительно много. Эрлангрешил эту зад
ачу, имея в виду постановки вопросов, возникших к тому времени в телефонном деле.
Выбор расп
ред
елени
я (1) для опи
сан
ия дли
тельности обслужи
вания произведен
н
е случайно.
Дело в том, что в этом предполо
жении задача доп
уска
ет простоерешение
, которое с удовлетворитель
ной дляпрактики точностью оп
исывае
т ход интересующего нас процесса.
Распределение
(1
) и
грает в теори
и массового обслуживания
исключи
тельн
ую роль
, которая в зн
ачи
тель
ной
ме
ре
вызвана следующи
м его свой
ством:
При
показа
тел
ьном ра
спределе
нии длительности обслуживани
я распреде
лен
ие длитель
ности оставшейс
я части работы по обслу
живанию не зависит от того, сколько он
о уже
продолжалось.
Действи
тельн
о, пусть означает вероятн
ость того, что обслуживание,
которое ужо
продолжается вре
мя а,
продлится еще
не мен
ее чем .
В предположении, что длительность
обслуживания
распределена показательно,
. Далее ясн
о, ч
то
и . А так как всегда и ,
и, следовательно,
Требуемое доказано.
Несомненно, что в ре
альной
обстановке показательн
ое время обслужи
вани
я являе
тся,
ка
к прави
ло,
лишь грубым приближ
ением к де
йстви
тельности
. Так, нередко время обслу
живания не
мо
ж
ет быть меньше, че
м нек
оторая определен
ная величи
на. Пре
дположе
ни
е же (1) при
водит к тому, что зн
ачи
тельная доля требован
ии н
уж
дае
тся лишь в кратковременн
ой операции, бли
зкой к 0. Позднее перед нами
возникает задача освобож
дения от излишнего
ограничения, н
акладываемого предположением
(1). Необходимость
этого была ясн
а уж
е самому Эрлангу,
и он в ряде работ де
лал усилиянайти иные
удачные распределе
ния для длительности обслуживани
я. В частн
ости, им было предлож
ено так н
азываемое ра
спределени
е Эрланга
,
плотность расп
ределения которого дается формулой
где >
0, a k
— целое
положительное
число.
Распределение Эрла
нга представляе
т собой распределение
суммы k
- не
зависи
мых сла
гае
мых, каждое
из
которых и
меет распределение
(1).
Обозначим для случая распределения (1) через время обслуживания требования. Тогда средняя длительность обслуживания равна
Это равенство даст нам c
посоá оценки
п
араметрап
о оп
ытным
дан
ным. Как ле
гко вычислить,
ди
сп
ерсия длительности
обслуживания
равна
2.
Процесс обслуж
ивания как марковск
ий случайны
й процесс.
В указанных нами предп
олож
ениях о потоке требований и о дли
те
льности обслужи
вания задачи теори
и массового обслуживания
приобретают некоторы
е черты, облегчающи
е проведени
е исследовани
й. Мы отмечали уже вычислительн
ую простоту. Теперь отметим более
принципи
альное соображе
ни
е,
которое станем развивать применительно к и
зучаемой задаче.
В каждый момент рассматривае
мая систе
ма может находи
ться в одном и
з следующих состоян
ии
: в моментt
в системе находятсяk
требован
ии
(k=
0,
1, 2, ...).
Еслиkrn,
то в системе на
ход
ятся и обслуживаются
kтребований
, а m-k
-приборов
свободны. Если km, то m требований обслуживаются, а k-m находятся в оче
ред
и и ожидаю
т обслуживания.
Обозначим
че
рез состояние, ког
да в си
сте
ме находятсяk
треб
овани
й. Таким
образом, система может находиться в состояниях
..
. Обозначи
м через —
вероятность
того, что система в момент t
окажется в состояни
и .
Сформули
руем, в чем заключае
тся особенность и
зучаемых нами
задач в сделанн
ых предположениях.
Пусть в некоторый момент наша си
стема находилась и состоянии .
Докажем, что последующее тече
ние
процесса обслуживани
я не зави
сит в смысле теории
вероятностей от того, ч
то прои
сходило до момента.
Действительно, дальнейшее
тече
ни
е обслужи
вани
я полностью определяется тремя следующими
факторами
:
моментами
окон
чани
я обслуживаний, производящи
хся в момент
;
моментами поя
вления н
овых требований;
длительностью обслуживания требован
ий, поступивши
х после
.
В силу особенносте
й показательн
ого распределения дли
тельность остающейся части
обслуживания
не зави
сит от того, как долго уже продолжалось обслуживан
ие до момента. Так как п
оток требо
ваний простейший, то п
рошлое не влия
ет на то, как много требований
появится после моме
нта
.
Наконец длитель
ность обслуживания требований, появившихся после , никак не зависит от того, что и как обслуживалось до момента .
или же процессами без последействия
. Итак, система с ожиданием в случае простейшего потока и показательного времени обслуживания представляет собой случайный процесс Маркова. Это обстоятельство облегчает дальнейшие рассуждении.
3. Составление уравнений.
Задача теперь состоит в том, чтобы найти те уравнения, которым удовлетворяют вероятности . Одно из уравнения очевидно, a именно для каждогоt
(2)
Найдём сначала
вероятность того, что и момент
t.+h
в
се
приборы свободны. Этоможет произойти следующими способами:
· в мом
ен
тt
все
п
рибо
рыбыли свободны
и за
время h новых требовани
й непоступало;
· в моментt
одинприбор былзанятобслуживанием требования, все остальные приборы свободны; за вре
мяh
обслуживание требованиябыло завершено иновых требований не поступило.
Остальные возможности, как-то: были заняты два или три прибора и за время h работа на них біла закончена - имеют вероятность о(h), как легко в этом убедится.
Вероятность первого из указанных событий равна
,
вероятность второго события
.
Таким образом
.
Отсюда очевидным образом приходим уравнению
Перейдём теперь к составлению уравнений для при 1. Рассмотрим отдельно два различных случая: 1 и . Пусть в начале 1. Перечислим только существенные состояния, из которых можно прийти в состояние в момент t+h. Эти состояния таковы:
В момент t система находилась в состоянии , за время h новых требований не поступило и ни один прибор не окончил обслуживания. Вероятность этого события равна:
В момент t система находилась в состоянии , за время h поступило новое требование, но ни одно ранее находившееся требование не было закончено обслуживанием. Вероятность этого события равна
В момент t система находилась в состоянии , за время h новых требований не поступило, но одно требование было обслужено. Вероятность этого равна
Все остальные мыслимые возможности перехода в состояние за промежуток времени h имеют вероятность, равную о(h).
Собрав воедино найденные вероятности, получаем следующее равенство:
Несложные преобразования приводят от этого равенства к такому уравнению для 1;
(4)
Подобные же рассуждения для приводят к уравнению
(5)
Д
ля оп
ределения вероятносте
й получили бесконечную систему
дифференциальных уравнений (2)-(
5).Её реше
ние п
редстав
ляет н
есомненн
ые те
хническ
ие трудно
сти
.
4. Опр
еделение стациона
рного р
ешени
я.
В теори
и массового обслуживания
обычно из
учают ли
шь устан
овившееся решение
для .
Существование таких решений устан
авливается так называемы
ми эргодическими теоремами
, некоторыеиз ни
х п
оз
днее будут
установлены.
В рассматриваемо
й задаче оказывается,
что предельные или, как говорят об
ычн
о,
стационарн
ые
вероятн
ости существ
уют. Введём
для н
их обозначения
. Заметим доп
олни
тельн
о, чтоп
ри.
Ск
аз
ан
ное позволяет
заключи
ть, что у
равнения(
3), (4),
(
5) для ст
аци
онарных вероятн
остей
п
ри
ни
мают следующ
ий вид:
(6)
при 1
(7)
при
(8)
К этим уравнениям добавляется нормирующее условие
(9)
Для решения полученной бесконечной алгебраической системы введём обозначения: при 1
при
Система уравнений (6)-(8) в этих обозначениях принимает такой вид:
при
Отсюда заключаем, что при всех
т.е. при 1
(10)
и при
(11)
Введём для удобства записи обозначение
.
Уравнение (10) позволяет заключить, что при 1
(12)
При из (11) находим, что
и, следовательно, при
(13)
Остаётся найти . Для этого в (9) подставляем выражения из (12) и (13). В результате
так как бесконечная сумма, стоящая в квадратных скобках, сходится только при условии, что
(14)
то при этом предположении находим равенство
(15)
Если условие (14) не выполнено, т.е. если , то ряд, стоящий в квадратнойскобке уравнения для определения ,
расходится и, значит, должно быть равно 0. Но при этом, как следует из (12) и (13), при всех оказывается .
Методы теории цепей Маркова позволяют заключить, что при с течением времени очередь стремится к по вероятности.
Поясним полученный результат на нескольких практич
ески
х п
римерах, которые
покажут, что обычные в практической деятельности подсчеты, основанные на чисто арифметических соображениях, при которых не учитывается сп
ец
ифи
ка случайных колебаний
в поступле
нии требований
н
а обслуживание,
при
водят к серьезным п
росчетам.
Пусть врач успевае
т удовлетвор
ительн
о осмотреть больного и зап
олн
ить его историю болезни
в сре
дне
м за 15 мин
ут. Пла
нирующие органы из этого обычно делают вывод: за четырёхчасовый рабочий день врач должен принимать 16 человек. Однако больные приходят в случайные моменты времени.
В результате при таком п
одсче
те пропускно
й способности врача к нему неизбежно скапливается очередь, так как при проведенном подсчете принимается равным 1. Теже заключения относятся и к расчету числа коек в больницах, числа работающих касс в магазинах, числа официантов в ресторанах и т. д. К сожалению, некоторые экономисты совершают такую же ошибкуи при расчете погрузочных средств в карьерах, числе приемщиков на элеваторах, числе причалов в морских портах и пр.
Во всем дальней
шем мы предполагаем, что условие (14) выполнено.
5. Некоторые подготовительные результаты.
Для задачи с ожиданием
осн
овной характеристикой
качества обслуживания
является дли
тельность ожи
дания тре
бован
ие
м начала обслуживания.
Дли
тельн
ость ож
идания представляет собой случайную величину, которую обозначим буквой. Рассмотрим
сейчас только задачу определения распределения вероятностей длительности ожидания
в уже
устан
овившемся процессе обслуживания. Обозн
ачим
далее через
вероятность того, что длительность ожидания превзойдёт t, и через вероятность неравенства, указанного в скобке при условии, что в момент поступления требования, для которого подсчитывается длительность ожидания, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство
(16)
Прежде чем преобразовать эту формулу к виду, удобному для использования, приготовим некоторые необходимые для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для .
Несложные преобразования приводят к таким равенствам
: приm
=
1
=1-, (17)
а при m=2
(18)
Вычислим теперь вероятность того, что все приборы будут заняты в какой-то наудачу взятый момент. Очевидно, что эта вероятность равна
(19)
Эта формула для m=1 принимает особенно простой вид:
(20)
при m=2
(21)
В формуле (19) может принимать
любое значение от 0 до m
(исключительно).
Так что в формуле
(20) < 1,
а в (21) <2.
6. Определени
е функции
распределения длительности ожидания.
Если в момент поступления требования в очереди уже находилисьk
-
m
требований, то, поскольку обслуживание происходит в порядке очередности, вновь поступившее требование долж
но ожидать, когда будут обслуженыk-m+
1 требований. Пусть означает вероятность того, что за промежуток времени длительностиt
после поступления интересующего требования закончи
лось обслуживание ровно s требований. Ясно, что при имеет место равенство
Так как распределение длительности обслуживания предположено показательным и не зависящим ни от того, сколько требований находится в очереди, ни от того, как велики длительности обслуживания других требований, то вероятность за время t не завершить ни одного обслуживания (т.е. вероятность того, что не освободится ни один из приборов) равна
Если все приборы
заняты обслуживанием и
ещё име
ется д
остаточн
ая оче
редь требований,
которые ожидают
об
служи
вани
я, то поток обслуженных требований будет простейши
м. Действительно, в этом случае все три условия — стационарность, отсутствие последействия и ордин
арность — вып
олнены. Вероятность освобождения за промежуток времениt
ровноs
приборов равна (это можно показать и простым подсчетом)
Итак,
и, следовательно,
Но вероятности известны:
поэтому
Очевидными преобразованиями приводим правую часть последнего равенства к виду
=
.
Из формул (18) и (19) следует, что поэтому при m0
(22)
Само собой разумеется, что при t0
Функция имеет в точке t=1 разрыв непрерывности, равный вероятности застать все приборы занятыми.
7. Средняя длительность ожидания.
Формула (22) позволяет находить все интересующие числовые характеристики длительности ожидания. В частности, математическое ожидание длительности ожидания начала обслуживания или, как предпочитают говорить, средняя длительность ожидания равна
Несложные вычисления приводят к формуле
(23)
Дисперсия величины равна
Формула (23)даёт среднюю длительность ожидания одного требования. Найдем
среднюю п
отерю вре
мени требованиями, пришедшими в систему обслуживания в тече
ни
е промежутка вре
мени T.
За врем
я T в систему поступ
ает требований и среднем; общая потеря ими времени па ожидание в среднем равна
(24)
Приведем небольшие арифметические подсчеты, которые продемонстрируют нам, как быстро возрастают суммарные потери времени па ожидание с изменением величины . При этом мы ограничиваемся случаем Т=1 и рассматриваем лишь самые малые значения т: т
=1 и т=2.
При т
=1 в силу (20)
При р=0,1; 0,3; 0,5; 0,9 значение а
приблизительно равно 0,011; 0,267; 0,500;1,633; 8,100.
При m=2 в силу (24)
При =0,1; 1,0; 1,5; 1,9 значение а
приблизительно равно 00003; 0,333; 1,350; 17,537.
Приведённые данные иллюстрируют хорошо известный факт относительно большой чувствительности систем обслуживания, уже достаточно сильно загруженных, к возрастанию загрузки. Потребитель при этом сразу ощущает значительное возрастание длительности ожидания. Этот факт обязательно следует учитывать при расчёте загрузки оборудования в системах массового обслуживания.
Раздел
ІІІ
. Пример использования СМО с ожиданием
В городе имеется транспортное агентство для обслуживания населения. Число заявок на обслуживание случайно и представлено выборкой 1.
Время перевозок (включая время возвращения в гараж), так же случайно и представлено выборкой 2.
Определить :
1) оптимальное число автомашин в агентстве, выполняющих операции в течение 10 часов в день; полагая, что обслуживание одной заявки приносит доход в 20 грн, а простой автомашины приносит убыток 3,25 грн. в час.
2) 5-6 операционных характеристик, наиболее существенных для анализа работы агентства.
3) Вероятность занятости каждой из автомашин в предложении, что все машины пронумерованы, а обслуживание очередной заявки осуществляет свободная машина с наименьшим номером.
Выборка 1 число заявок на перевозку за день =0,046229
Х1 ={8;5;8;4;21;0;9;3;8;5;1;4;12;0;10;1;0;7;2;21;1;3;4;6;0;8;2;22;1;2;8;4;5;6;2;6;
3;6;16;7;2;2;2;13;5;5;21;2;4;}
Выборка 2 Время обслуживания одной заявки в часах.
Х2 = 25,52,22,7,15,55,43,11,25,24,23,24,13,15,11,38,8,18,14,73,8,48,22,4,30,6,17,12,23,112,10,45,4,32,123,39,59,19,5,12,5,7,74,57,10,35,12,28,11,16.
Прежде чем рассматривать транспортное агентство как СМО, необходимо доказать, что мы имеем на это право.
Действительно, наше транспортное агентство обладает всеми присущими СМО элементами.
Входящий поток - заявки на перевозку, есть очередь неограниченной длинны, обслуживающими приборами являются автомашины, обслуженные заявки составляют входящий поток.
Обоснуем наши утверждения и поясним. Входящий поток, как уже отмечалось, являются заявки на обслуживание населения. Для дальнейшей работы необходимо убедиться в том что входящий поток является простейшим (пуассоновским).
Докажем это на сознательном уровне. Ординарность вытекает из следующих соображений: две или более заявок вряд ли успеют в секунду в секунду прибыть к транспортному агентству, какая то одна все равно будет первой а остальные будут вынуждены стать в очередь, к тому же одна машина одновременно не станет заниматься двумя или более заявками.
Отсутствие после действия обуславливается тем что заказчик машины (на обслуживание) вряд ли знает, сколько поступило заявок на обслуживание до него и сколько ему придется ждать обслуживания, т.е. заявки поступают не зависимо друг от друга.
Стационарность обслуживается тем что число заявок на транспортировку за один час в среднем постоянно.
Таким образом можно сделать вывод что входящий поток требований имеет Пуассоновское распределение.
Приведём критерий проверки распределения входящего потока требований на соответствие пуассоновскому закону распределения.
Одним из признаков того, что случайная величина распределена по закону распределения Пуассона, является совпадение математического ожидания случайной величины и дисперсии этой же случайной величины, то есть:
В качестве оценки для математического ожидания обычно выбирают выборочное среднее
а в качестве оценки дисперсии - выборочную дисперсию:
где n - объём выборки X1={};
N - объём вариационного ряда;
- частота в выборке Х1.
Проведём расчёты:
Найдём отношение:
»1
Результаты проверки распределения входящего потока требований на соответствие пуассоновскому закону распределения приведены в приложении 2 .
Применение непараметрического критерия А.Н.Колмогорова для проверки статистических гипотез
Рассмотрим применение этого критерия для проверки гипотез о соответствии теоретического распределения случайной величины - эмпирическому, где случайная величина представлена выборкой Х2. И продемонстрируем его применение для анализа распределения времени обслуживания одного из каналов СМО.
Пусть нам задана выборка Х2= случайной величины ,которая выражает длительность (время) обслуживания заявок одним из каналов исследуемой системы массового обслуживания. Выборка Х2 имеет объём n=50.
Гипотеза Н заключается в том, что случайная величина имеет показательное распределение с параметром , т.е.
,
где - оценка параметра показательного распределения , которая находится как обратная величина к исправленному среднему выборочному :
, где ,
а - элемент выборки Х2, выражает чистое время обслуживания k-той заявки, поступившей в систему массового обслуживания.
Находим оценку параметра для нашей выборки Х2,
Дальнейший этап исследования заключается в построении эмпирической функции распределения . Для этой цели построим по выборке Х2 вариационный ряд , где - строго упорядоченные, а каждому значению отвечает соответствующая ему частота , равная числу повторений в выборке Х2, причем выполняется тождество:
.
Тогда эмпирическую функцию распределения можно записать в виде:
После того, как эмпирическая функция распределения построена, можно вычислить разности
в точках , и где - достаточно малое число, скажем .
Теперь вычисляем , , , где
={; }
Для автоматизации вычислений значений , , использована вычислительная техника, результаты занесены в Приложение 2.
={; }
Далее проводим проверку гипотезы. По найденному значению проверяем гипотезу Н, сравнивая с величиной . Если , то гипотезу Н о том, что время обслуживания заявок подчинено показательному закону с параметром , можно считать не противоречащей опытным данным. Если же, , то гипотеза Н отвергается.
Квантиль z находим по приближённой формуле:
,
исходя из заданного уровня значимости .
Получаем для =0,0005: z=1,358102.
В нашем случае
=
и, сравнивая полученные величины находим:
0,0959220,226350 т.е. .
Выводы:
Можно утверждать, что для 0,05% уровня значимости гипотеза Н о том, что время обслуживания заявок имеет показательное распределение с параметром =0,034975, не противоречит опытным данным.
Доказав, что входящий поток требований имеет пуассоновское распределение и время обслуживания заявок имеет показательное распределение, мы имеем право приступать к дальнейшему решению поставленной задачи.
Расчёты
I Средняя интенсивность поступления заявок на транспортировку:
=6 заявок в день, а так как транспортное агентство работает 10 часов в день то = 0,6 заявок в час.
2. Среднее время обслуживания заявки.
3. интенсивность выходящего потока
4. коэффициент загрузки системы
таким образом из условия принимает min количество автомашин
5. находим среднее время ожидания заявки при количестве автомобилей в агентстве больше 17.
6. среднее число автомашин, свободных от обслуживания
7. находим убыток от простоя автомашин в день
8. находим убыток от не обслуженных на протяжении дня заявок, из-за большего времени ожидания. Так как прибыль от обслуживания одной заявки приносит доход в 20 грн. то из-за большого времени ожидания в день агентство будет не дополучать:
9. определим суммарный убыток от простоя автомашин и от не обслуженных заявок.
Для определения оптимального числа автомашин в агентстве выполняющих операции в течении 10 часов в день нужно найти.
ІІ. Важнейшими операционными характеристиками СМО с ожиданием являются:
1. среднее число свободных устройств
2. среднее число занятых устройств
3. вероятность того что все обслуживающие устройства заняты
4. вероятность того что все обслуживающие устройства свободны
5. средняя длинна очереди
6. среднее время ожидания начала обслуживания:
7. коэффициент простоя обслуживающих устройств:
ІІІ. Вероятность заявки каждой из автомашин в предложении, что все автомашины пронумерованы, а обслуживание очередной заявки осуществляет свободная машина с наименьшим номером
Результаты расчетов приведены в приложении 2.
ВЫВОДЫ
В этой курсовой работе раскрыты понятия приводящие к системе массового обслуживания, а именно: обслуживание, обслуживает прибор система обслуживания, система массового обслуживания.
Также описаны типичные элементы, из которых состоят системы массового обслуживания (входящий поток, его описание и основные особенности, очередь и ее дисциплина, обслуживающие приборы и особенности механизма обслуживания, входящий поток).
Что касается практического задания, то рассмотренное в данной задачей транспортное агентство является СМО с ожиданием. Поступающий поток заявок на обслуживание является простейшим (Пуассоновским), а время обслуживания соответствует показательному закону распределения, это было доказано с помощью не параметрического критерия А.Н. Колмогорова.
Оптимальное число автомашин в агентстве, выполняющих операции в течении 10 часов в день равно 18.
Название реферата: Классификация систем массового обслуживания и их основные элементы
Слов: | 5291 |
Символов: | 47092 |
Размер: | 91.98 Кб. |