Пояснительная записка к курсовой работе
Студент Гиргидов А.А., Группа : 5011/1
Санкт-Петербургский Государственный технический университет
Кафедра подземных сооружений, оснований и фундаментов
2000
Исходные данные
Режим работы – безнапорный.
Класс капитальности – II.
Максимальный расход воды в туннеле – м3
/с.
Средняя скорость протекания воды в туннеле – м/с.
Отметка верха лотка туннеля – м/с.
Структурно-геологическая характеристика горных пород приведена в таблице:
Номер пласта |
Наименование горной породы |
Отметка кровли пласта, м |
1 | Суглинок | 0 |
2 | Сланец | -40 |
Физико-механические характеристики горных пород:
Номер Пластов |
Удельный вес сухого грунта | Влажность |
|
|
Коэффициенты | ||
Поперечной деформации |
удельного отпора |
крепости |
|||||
1 | 2.04 | ||||||
2 | 2.41 | 0.04 | 58 | 2.3 | 0.26 | 290 | 3.5 |
Определение внутренних размеров туннеля.
Будем считать, что колебания воды в туннеле не превышают , где - высота туннеля. Тогда отношение
,
где - ширина туннеля по дну.
Принимаем
,
где - радиус сечения туннеля, который определяется по формуле:
,
где м3
/с - максимальный расход воды в туннеле; м/с - средняя скорость протекания воды в туннеле;
м.
Согласно таблице 2 [1, стр.17], получаем следующие соотношения основных размеров:
м;
.
Выбор формы сечения туннеля
Выбор формы поперечного сечения туннеля осуществляется с учетом условий статической работы обделки, гидравлических условий пропуска воды, а также способов и условий производства работ при сооружении туннеля.
В нашем случае туннель работает в безнапорном режиме, поэтому определяющей нагрузкой при выборе формы сечения является горное давление, величина и направление которого может оцениваться коэффициентом крепости породы , окружающей туннель.
Согласно таблице 1. [1, стр.14] поперечное сечение туннеля принимается корытообразную форму (II форма).
Составление эскиза конструкции обделки и выбор материалов для ее возведения.
Принимаем корытообразную монолитную железобетонную обделку (рис.4.1). Согласно таблице 3 [1, стр.23], толщина обделки назначается по следующим зависимостям:
м;
;
м;
м.
Обделка выполняется из железобетона, для этого используется бетон марки М 200 и арматура класса А II.
Определение нормативных и расчетных нагрузок, их сочетаний и коэффициентов упругого отпора породы
Одной из основных нагрузок, действующих на обделку туннеля, является горное давление. Это давление возникает из-за того, что при устройстве туннеля в горных породах образуется свод обрушения – область грунта, теряющего равновесие и, вследствие этого, оказывающего давление на обделку. Распределение нагрузок на обделку туннеля и форма свода обрушения приведена на рис.4.
Величина горного давления определяется расчетом, основанном на использовании значений характеристик пород, окружающих туннель. При этом в соответствии с указаниями СН распределение вертикального и горизонтального горных давлений принимаются равномерными по пролету и высоте выработки :
м;
м.
Вертикальное горное давление определяется по формуле:
,
где - коэффициент, равный при м; - удельный вес грунта т/м3
;
Высота свода обрушения , определяется по формуле:
,
где - пролет свода обрушения:
м,
где - расчетный угол внутреннего трения породы;
.
Таким образом, получается, что
тс/м.
Горизонтальное нормативное горное давление определяется по формуле:
тс/м.
Возможность возникновения давления на обделку снизу (дутье) проверяется по условию:
,
где тс/м2
- сцепление породы по подошве выработки;
тс/м;
.
Следовательно,
тс/м,
следовательно, дутья нет.
Так как давление на обделку снизу отсутствует, принимается разомкнутая конструкция обделки.
Определение расчетного коэффициента отпора :
по боковой поверхности
,
где кгс/см3
- коэффициент удельного отпора, м;
тс/м3
;
по подошве стены
,
где - коэффициент поперечной деформации породы,
тс/м3
.
Для статического расчета обделки, который будет выполнен далее, выделим на срединной линии обделки 12 точек и определим их положение в системе координат, положение которой показано на рисунке 3. Для каждой точки определим координаты х и у, а также толщину обделки. Полученные результаты представим в виде таблицы и туда же запишем значения коэффициентов отпора К .
Таблица 5.1.
№ | х, м | у, м | h, м | К, тс/м3
|
1 | 0.00 | 0.00 | 0.2875 | 109434 |
2 | 0.64 | 0.18 | 0.2887 | 109434 |
3 | 1.21 | 0.35 | 0.2924 | 109434 |
4 | 1.75 | 0.75 | 0.2988 | 109434 |
5 | 2.15 | 1.19 | 0.3086 | 109434 |
6 | 2.41 | 1.80 | 0.3227 | 109434 |
7 | 2.47 | 2.46 | 0.3450 | 109434 |
8 | 2.47 | 3.02 | 0.3450 | 109434 |
9 | 2.47 | 3.77 | 0.3450 | 109434 |
10 | 2.47 | 4.52 | 0.3450 | 109434 |
11 | 2.43 | 5.02 | 0.3450 | 635775 |
Статический расчет монолитной обделки туннеля
6.1Краткое описание метода метрогипротранса
Обделка туннеля, имеющая произвольную форму и окруженная упругой средой является бесконечное число раз статически неопределимой системой, точное определение усилий и реакций в которой невозможно в настоящее время. Для определения внутренних усилий в обделке используют численные методы дающие приближенное решение. Одним из наиболее точных методов является метод метрогипротранса, основанный на преобразовании заданной системы в расчетную принятием следующих допущений:
криволинейное очертание обделки заменяется вписанным многоугольником (рис.5);
непрерывное изменение жесткости обделки заменяется ступенчатым и постоянным в пределах каждой стороны многоугольника;
распределенные нагрузки заменяют усилиями сосредоточенными в вершинах многоугольника;
сплошную упругую среду заменяют отдельными упругими опорами расположенными перпендикулярно к поверхности обделки и помещенными в вершинах многоугольника.
Угол характеризует зону безотпорного участка, которая устанавливается расчетом. Если при расчете реакций опор, поместить опоры в сектор, охватываемый углом , то их реакции получаются отрицательными. Это соответствует ²о
Основная система и канонические уравнения
Основная система представляет собой шарнирную цепь (шарниры в местах упругих опор и замке).
Расчет ведется методом сил, т.к. он дает минимальное число неизвестных. За лишние неизвестные принимаются парные моменты в шарнирах, которые определяются решением системы канонических уравнений, каждое из которых исключает взаимный поворот стержней сходящихся в шарнире.
Канонические уравнения записываются в следующем виде:
(6.1)
где - число узлов на полупериметре срединной линии обделки; и -угловые перемещения в точке ²²по направлению неизвестного момента от действия парных единичных моментов, приложенных в точке ²² и от внешних нагрузок ; - угол поворота пяты стены обделки от действия единичного момента в пяте, равный
,
где тс/м3
– коэффициент упругого отпора пяты,
- момент инерции сечения пяты.
Угловые перемещения определяются по формулам строительной механики:
; (6.2)
где - изгибающие моменты и нормальные силы в основной системе от действия единичных моментов, приложенных в точках ²i² и ²j²; – номер стержня конструкции или опоры; - усилия в опоре в основной системе от действия парных единичных моментов, приложенных в точках ²i² и ²j²; - момент инерции,
площадь сечения и длина стержня ;- характеристика жесткости опоры, определяемая по формуле:
,
где - ширина опоры.
В формуле (6.2.) 1-е слагаемое учитывает влияние изгиба стержней; 2-е слагаемое – продольное сжатие стержней, 3-е слагаемое – влияние осадки упругих опор.
,
где - осадка упругой опоры под действием единичной силы; коэффициент отпора породы на опоре ; - напряжение породы под опорой от действия единичной силы.
Основная система представлена на рисунке 6.
Для определения грузовых перемещений , усилия заменяем усилиями в основной системе от действия нагрузок.
Рассмотрим метод построения эпюр Мр
и Nр
на примере узлов 1 и 2 (рис.7).
Дано: Р1
, Р2
, Е1
, Е2
– внешняя нагрузка; V1
p
, H1
p
– реакции в шарнире от внешней нагрузки; х1
, у1
, х2
, у2
координаты узлов.
Требуется найти реакцию опоры от действия внешней нагрузки R1
p
.
Для этого запишем уравнения моментов и приравняем их к нулю. Решая уравнения определим R1
p
и R2
p
. Проверкой может служить условие равенства нулю суммы проекции всех сил на ось ОХ.
Аналогично определяется Rip
.
Ту часть обделки, где наблюдается зона безотпорного участка, будем рассчитывать как трехшарнирную арку. По заданным значениям нагрузок Р и Е, и координатам вершин углов можно найти реакции в шарнире V1р
, Н1р
и построить эпюру моментов на участке обделки ²0 - 1².
Эпюра моментов Мр
в арке, изображенной на рис.6 будет ненулевой. На участке обделки ²1 - n² значения моментов от действия основной нагрузки в основной системе равны нулю.
Для определения значений dij
коэффициентов требуется построить эпюры от действия единичных моментов в узлах 0 - n в основной системе. Метод расчета остается тем же, что использовался при построении эпюры Мр
, а именно:
рассматривается трехшарнирная арка, нагрузки Е и Р приравниваются к нулю, т.к. в методе сил основные нагрузки при построении эпюр моментов во вспомогательных состояниях не рассматриваются; в узле ²0² прикладывается единичный момент М0
= 1 (см. рис.8 ), строится эпюра моментов в арке, а также определяются значения реакций в шарнире V10
и H10
;
полагая внешние нагрузки равными нулю, используя метод изложенный выше, построим эпюры М0
, N0
и R0
(расчетная схема показана на рис.8);
прикладывая к основной системе в качестве внешней нагрузки момент М1
= 1, строим эпюры М1
, R1
, N1
.
Аналогично строятся эпюры для остальных вспомогательных состояний.
Методом Верещагина вычисляем значения коэффициентов dij
, Di
и, подставляя их в систему канонических уравнений, находим значения моментов в вершинах углов многоугольника, аппроксимирующего обделку.
Затем строим эпюры М, N и R для зоны безотпорного участка, определяя значения расчетных величин в вершинах углов по следующим формулам:
где m – номер точки, для которой определяем значения М, N, и R; Мmp
, Nmp
, и Rmp
– усилия в точке m основной системы в грузовом состоянии; Мm
к
, Nm
к
и Rm
к
– усилия в точке m основной системы в к-том вспомогательном состоянии; Мк
– момент в точке к расчетной схемы.
Выбор арматуры
В данном пункте определяется необходимая площадь сечения арматуры в обделке. Для этого предварительно намечается три сечения, в которых значения момента экстремальны, и рассматриваются последовательно - в строительный и эксплуатационный периоды. Расчет ведем по первой группе предельных состояний по методу, изложенному в [3, стр. 137]
Сечение I-I (строительный период).
тс*м – изигбающий момент;
тс – нормальная сила;
м – толщина обделки;
м – эксцентриситет;
hоб
/6= 0.29/6=0.048м;
е0
<h0б
/6;
hо
= hоб
- а = 0.29 – 0.05=0.24 м – полезная толщина обделки;
Rпр
=900 тс/м2
– призменная прочность бетона;
Rа
=2100 тс/м2
– расчетная прочность арматуры;
kн
=1,2;
F¢а
= 0.
тс*м.
,
Следовательно,
;
м;
см2
.
Сечение I-I (эксплуатационный период).
Аналогично:
тс*м – изигбающий момент;
тс – нормальная сила;
м – толщина обделки;
м – эксцентриситет;
В следствие того, что исходные величины равны аналогичным величинам строительного случая, то расчет не приволдится.
Определим площадь сечения арматуры из условия минимального армирования. Минимальная степень армирования
;
.
Т.о.,
см2
,
см2
,
Сечение II-II (строительный период).
тс*м – изигбающий момент;
тс – нормальная сила;
м – толщина обделки;
м – эксцентриситет;
hоб
/6= 0.31/6=0.052м;
е0
<h0б
/6;
hо
= hоб
- а = 0.31 – 0.05=0.26 м – полезная толщина обделки;
Rпр
=900 тс/м2
– призменная прочность бетона;
Rа
=2100 тс/м2
– расчетная прочность арматуры;
kн
=1,2;
F¢а
= 0.
тс*м.
,
Следовательно,
;
м;
см2
.
Сечение II-II (эксплуатационный период).
Аналогично:
тс*м – изигбающий момент;
тс – нормальная сила;
м – толщина обделки;
м – эксцентриситет;
В следствие того, что исходные величины равны аналогичным величинам строительного случая, то расчет не приволдится.
Определим площадь сечения арматуры из условия минимального армирования. Минимальная степень армирования
;
.
Т.о.,
см2
,
см2
,
Учитывая тот факт, что значение момента M в сечении III-III значительно меньше, чем в сечении II-II, делается вывод, что в сечении III-III определяющим является
Cечение III-III:
.
Окончательно принимаем арматуру:
см2
¾ 5 Æ 30 мм;
см2
¾ 10 Æ 26 мм;
см2
¾ 5 Æ 12 мм.
Список литературы
Васильев И.М. Расчет монолитных обделок гидротехнических туннелей. – Л.: ЛПИ, 1980.
Автоматизированный расчет усилий в обделках гидротехнических туннелей. Методические указания. – Л.: ЛПИ, 1983.
Руководство по проектированию гидротехнических туннелей. Гидропроект им. С.Я. Жука. – М. Стройиздат, 1982.