Это один из современных и уже довольно широко применяемых методов изучения деформационных свойств горных пород. Сущность его та же, что и метода испытания горных пород пробными статическими нагрузками. Она состоит в исследовании изменений деформации горных пород, слагающих стенки скважин, при воздействии на них возрастающих ступеней нагрузки.
Эти исследования производят с помощью специального прибора бокового давления – прессиометра, представляющего собой цилиндр (камеру) с эластичными стенками (рис.1). Его устанавливают в скважине и под воздействием давления жидкости (гидравлический прессиометр) или газа (пневматический прессиометр), нагнетаемых в камеру, производят уплотнение горных пород в стенках скважины и одновременно определяют значения действующего давления и деформации горных пород. По данным измерений вычисляют значения модуля общей деформации Е о .
Прессиометрический метод применим для исследования деформационных свойств любых горных пород - скальных, полу-скальных, рыхлых несвязных и мягких связных, но наиболее часто его применяют при изучении свойств песчаных и глинистых пород. Примером этого метода для исследования скальных пород могут служить исследования песчаников и диабазов, залегающих в основании Братской ГЭС.
На графике, выражающем зависимость ? r = f ( p ) (см. рис.2) обычно выделяют два участка, отражающие различные стадии деформации горных пород под воздействием на них нагрузки. Первый участок BC соответствует стадии их уплотнения и практически выражает линейную зависимость деформации от нагрузки. Давление р п – предел пропорцио-нальности – является пределом возможного использования линейной зависимости деформации горных пород. По первому участку кривой и вычисляют значение модуля деформации. Второй участок CD характеризует криволинейную зависимость развития деформации горных пород и означает начало и развитие их разрушения в зоне действия нагрузки. Давление р maxявляется пределом прочности горных пород.
В настоящее время известно достаточно много конструкций прессиометров. Идея этого прибора и методика испытаний горных пород в скважинах впервые были предложены в 1930 г . русским инженером путей сообщения А.А. Ктаторовым. Сейчас наиболее широко применяются прессиометры конструкций ГПИ Фундаментпроект, Уральского политехнического института им. С.М. Кирова, НИИ оснований и подземных сооружений и др.
Каждый прессиометр состоит из собственно прессиометра – цилиндра-камеры, устанавливаемой непосредственно в скважине, измерительной аппаратуры, включающей технические устройства для подачи давления (нагрузки) в рабочую камеру прессиометра, и приборов для измерения давления и деформаций горных пород. Прессиометр и измерительная аппаратура связаны между собой шлангами, а некоторые из них еще и электрическими проводами.
Выше уже было отмечено, что в зависимости от способа создания усилий (давления) в рабочей камере прессиометры бывают гидравлического или пневматического действия. При этом измерения деформаций горных пород производят либо по изменению объема рабочей камеры, либо по изменению ее диаметра с помощью электрических датчиков, устанавливаемых внутри рабочей камеры.
При подготовке к прессиометрическим испытаниям необходимо детально изучить геологический разрез по каждой опытной скважине и геологически обосновать выделение слоев, зон или подзон горных пород, подлежащих испытаниям. Выд
В соответствии с техническими данными прессиометров диаметр скважин должен быть от 76 до 127 мм , т.е. на 10- 20 мм больше, чем внешний диаметр прессиометра, а глубина до 15 м , редко более. Бурение необходимо производить способами, обеспечивающими полную сохранность естественного сложения и физического состояния горных пород в стенках скважины. Если в геологическом разрезе преобладают породы устойчивые, бурение скважин производят без обсадки и испытание пород проводят после окончания бурения, начиная с нижних горизонтов. Если в геологическом разрезе преобладают неустойчивые породы, их испытание производят в процессе бурения. В этом случае скважину бурят с обсадкой трубами до необходимой глубины, на которую опускают прессиометр. Затем обсадные трубы поднимают и производят обжатие пород в стенках скважины. В такой последовательности исследуют деформационные свойства пород в процессе бурения скважины.
Рис. 2. График зависимости деформаций горных пород от действующей нагрузки при прессиометрических испытаниях. ОА – расширение камеры прессиометра до со-прикосновения со стенками скважины; АВ – обжатие неровностей поверхности стенок скважины; ВС – уплотнение породы под действием бокового давления (фаза уплотнения пород); CD – заметное развитие сдвигов в породе (фаза заметного разрушения породы); ? r Н , р Н - приращение радиуса прессиометра и давления, соответствующие моменту завершения обжатия неровностей стенок скважины; ? r п , р п – приращение радиуса прессиометра и давления, соответствующие пределу пропорциональности деформаций горных пород от действующего давления |
Испытания каждого слоя, зоны и подзоны пород производят возрастающими ступенями нагрузки по 0,1 – 0,25 кгс/см 2 , если они имеют малую и среднюю плотность, и по 0,5 – 1,0 кгс/см 2 при плотном сложении. Каждая ступень давления создается в течение 1 – 2 мин и выдерживается до условной стабилизации деформации, т.е. когда она не превышает 0,1 мм за 30 мин у песчаных пород и за 1 ч – у глинистых. Наблюдения за деформациями производят в первые 15 мин в песчаных породах и 30 мин – в глинистых, соответственно через каждые 5 и 10 мин и впоследствии соответственно через каждые 15 и 30 мин до условной стабилизации деформаций.
При определении давления на стенки скважины при работе с гидравлическим прессиометром рекомендуется к давлению, измеренному манометром, добавлять давление столба воды от уровня манометра до середины рабочей камеры прессиометра. При установке гидравлического прессиометра на глубине более 10 – 15 м этот столб воды может создать значительное давление на стенки скважины, когда еще невозможно измерить деформацию пород. В слабых породах эти деформации могут быть значительными. Поэтому гидравлические прессиометры нецелесообразно применять при испытаниях пород на значительных глубинах и особенно в слабых, податливых породах.
Информация для статьи заимствована из книги: Ломтадзе В.Д. "Инженерная геология. Специальная инженерная геология." Л, Недра, 1978