РефератыАстрономияЛіЛінії передач для інтегральних схем

Лінії передач для інтегральних схем

Лекція 9


Лінії передач для інтегральних схем.


В інтегральній електроніці використовуються в основному плоскі лінії.


1. Симетрично – смушкова лінія (ССЛ): вона відкрита, тому має втрати.



2. Не симетрично – смушкова лінія (НСЛ):



3. Мікросмушкова лінія (microstrip line) – МСЛ. Тут ємність дуже велика, енергія сконцентрована. Підкладка з діелектрика . Лінія двоповерхова – це не дуже зручно.





4. Щілинна лінія (slot line). Вона є одноповерховою:





5. Компланарний хвильовід – все в одній площині.





Поля в несиметрично – смушковій лінії.


Складність розв’язання цієї задачі полягає в тому, що граничні умови тут – нерегулярні; не можна покласти, що на поверхні . Використовують наближені методи; зокрема конформних відображень.



Наближення
: Існує Т – хвиля (нехтуємо випромінюванням). Використаємо симетрію задачі. Цікавимося випромінюванням на краю.







Треба розв’язати задачу: знайти розв’язок рівняння Лапласа у верхній площині з напівнескінченним розрізом. Використаємо метод конформних відображень: тут застосовується інтегральне конформне перетворення Кристофеля – Шварца.





Розглянемо ламану лінію, що в точці а
змінює напрямок на кут :





. Якщо є два зломи, то , де , , . В нашій конкретній задачі ламану можна подати у вигляді:





Кут відраховується проти годинникової стрілки від наступного напрямку до попереднього. , , перенесемо точки: .


Проінтегрувавши отримаємо шукане перетворення: . Константи та визначаються з умов: , отже . Умовою ми не можемо скористатися, бо одержимо . Використаємо фізичні міркування:



Загальний вид відображення ; бо область інваріанта відносно зсуву вздовж ОХ (трансляційна симетрія).


Зрозуміло, у нашій задачі область при . При перетворення набуває вигляду: . Порівнюючи з , . Отже шукане перетворення: .


Для того, щоб знайти розв’язок у верхній півплощині, необхідно перетворити її в конденсатор, використовуючи перетворення зворотне до : . Тоді відображення, що перетворить вихідну область () (край конденсатора) у конденсатор (), має вигляд: .


Тепер необхідно розв’язати рівняння у плоскому конденсаторі та скористатись зворотнім перетворенням: , . .



Таким чином: .


Запишемо рівняння еквіпотенційних поверхонь: .


ЕПП переходить в .


ЕПП переходить в .


Таким чином, отримаємо таку картину еквіпотенціальних поверхонь:



Тепер знайдемо електричні силові лінії. Ці лінії перпендикулярні ЕПП, однак ми знайдемо їх в аналітичний спосіб. Очевидно, в () такі силові лінії, як на малюнку. Знайдемо образ цих ліній у просторі (). Наприклад, ,. Отримаємо картину ЕП в ():



Часто важливо знайти напруженість поля в певній точці: .


Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Лінії передач для інтегральних схем

Слов:417
Символов:3571
Размер:6.97 Кб.