РефератыЕстествознаниеНаНачало и конец Вселенной

Начало и конец Вселенной








Содержание
:



Введение....................................................................................................... 2


Ранняя Вселенная......................................................................................... 2


Назад к Большому взрыву.................................................................... 3


Абсолютная сингулярность.................................................................. 7


Раздувание............................................................................................. 9


Эпоха адронов..................................................................................... 10


Эпоха лептонов................................................................................... 10


Эпоха излучения................................................................................. 11


Фоновое космическое излучение........................................................ 11


Эпоха галактик.................................................................................... 13


Дальнейшая судьба Вселенной................................................................. 14


Скрытая масса..................................................................................... 15


Судьба замкнутой Вселенной............................................................. 19


Отскок.................................................................................................. 20


Судьба открытой Вселенной.............................................................. 20


Заключение................................................................................................. 21


Список литературы:................................................................................... 24


Словарь терминов..................................................................................... 25



Введение


Красота и величие темного ночного неба всегда волнуют нас. Каждое светящееся пятнышко на нем — образ звезды, ее свет, который давно, может быть за­долго до нашего рождения, оторвался от светила. Че­ловеку трудно представить себе необъятные просторы Вселенной, протекающие в ней сложные и мощные процессы приводят нас в трепет. Свет от некоторых видимых объектов шел к Земле миллионы лет, а ведь расстояние от нас до Луны тот же луч света преодоле­вает меньше чем за две секунды.


Наша Земля — всего лишь песчинка, затерявшаяся в бескрайнем пространстве, одна из девяти планет, об­ращающихся вокруг неприметной желтой звезды, на­зываемой Солнцем…


Многие люди, всматриваясь в небо и смотря на звёзды, думают, что хотя их жизнь и имеет свой конец, но эти все далекие звезды будут всегда – Вселенная бесконечна. Но это не так. Все в этом мире изменяется и Вселенная не исключение. Но было ли у Вселенной начало и будет ли конец? Если было начало, то для Вселенной было ''началом''? В этой работе мне хотелось бы рассмотреть современные теории возникновение и развитие Вселенной.


Для данной работы в качестве основного матерьяла использовалась книги ''Мечта Эйнштейна, в поисках единой теории строения Вселенной'', ''Фейманские лекции по физике'', ''Вселенная, жизнь, разум'' и ''Прошлое и будущее Вселенной''. Остальные источники использовались как дополняющие и поясняющие.


Мы начнем с теории возникновение Вселенной.



Ранняя Вселенная.


Мы живем в расширяющейся Вселенной, которая, согласно теории Большого взрыва, возникла примерно 18 миллиардов лет назад в результате взрыва не­вообразимой силы. В первые мгновения после взрыва не было ни звезд, ни пла­нет, ни галактик – ничего кроме частиц, излучения и черных дыр. Короче говоря, Вселенная находилась в состоянии полнейшего хаоса со столь высокой энер­гией, что частицы, обладавшие гигантскими скоростями, сталкивались практи­чески непрерывно. Это был, по сути, колоссальный ускоритель частиц, намного мощнее тех, которые построены в наши дни.


Теперь ученые строят все более и более мощные установки, чтобы разоб­раться, как взаимодействуют высокоэнергичные частицы. Но крупные уско­рители очень доро­гостоящи, а на их строительство уходят годы. Поэтому не­которые особенно нетер­пеливые ученые обратились к ранней Вселенной. Ее в шутку называют “ускорителем для бедных”, хотя это и не самое удачное название. Если бы нам пришлось строить ускоритель на такие характерные для ранней Военной энергии, он протянулся бы до ближайших звезд.


Раз уж строительство такой установки нам не по плечу, то, взяв за образец раннюю Вселенную или, по крайней мере, ее модель, можно попытаться понять, что происходит при столь больших энергиях.


Но чем вызван интерес к явлениям, происходящим при таких энергиях? Прежде всего, тем, что они помогают понять природу фундаментальных частиц, а также фу­ндамен­тальных взаимодействий. Установление связи между ними существенно для уяснения взаимозависимости космических явлений, а согласно современным теориям понимание связи между фундаментальными взаимодействиями может пролить свет на процессы в ранней Вселенной. Возникает, например, вопрос: почему фундаментальных взаимо­действий четыре, а не одно, что казалось бы более естественным? Такой же вопрос можно задать и о фундаментальных частицах.


Конечно, одна фундаментальная сила и одна фундаментальная частица значительно упростили бы описание Вселенной. Как мы увидим, возможно, она именно так и устроена. Согласно появившимся недавно теориям, при энергиях, характерных для ранней Вселенной, все четыре фундаментальных взаимодействия были слиты воедино. По мере расширения и остывания Вселенной, видимо, происходило разделение сил; как при понижении температуры замерзает вода, так, возможно, из единой силы могло “вымерзти” тяготение, оставив остальные три. Вскоре “вымерзло” слабое взаимо­действие, и, наконец, разделились сильное и электромагнитное. Если такая идея верна и при высоких энергиях действительно происходит объединение, исследование ранней Вселенной представляет исключительный интерес.


К середине 60-х годов большинство астрономов приняло концепцию происхождения Вселенной в результате Большого взрыва, предполагавшую, что в начале своего су­ществования Вселенная имела бесконечно малые размеры. Многим трудно согласиться с мыслью о том, что вся масса Вселенной когда-то содержалась в ядре, меньше чем атом. Однако есть нечто еще труднее воспринимаемое в этой идее первичного ядра. Нам кажется, что оно существовало в некотором бесконечном пространстве, где и взорвалось, однако астрономы утверждают, что это не так. Вокруг этого ядра не было пространства: ядро и было Вселенной. Взорвавшись, оно создало пространство, врем и материю. Позднее мы внимательнее рассмотрим этот взрыв и увидим, как из него развилась Вселенная, но прежде вернемся назад во времени к этому взрыву.



Назад к Большому взрыву.


Чтобы вернуться к самому началу, нужно знать возраст Вселенной. А это очень сложный и спорный вопрос. Долгие годы считалось, что возраст Вселен­ной составляет примерно 18 миллиардов лет. Эта циф­ра приводилась в большинстве учебников, статей и популярных книг по космологии и принималась большинством ученых, так как основы­валась на рабо­те Хаббла, которую долгие годы развивали Аллен Сэндейдж из Хейльской обсерватории и Густав Там-ман из Базеля.


Не все, однако, были согласны с таким результатом. Жерар де Вокулер из Техасского университета I работал над этой проблемой, используя сходную методику, и постоянно получал результат около 10 миллиардов лет. Сидни ван ден Берг из канадской обсерватории в Виктории также получил близкое значение. Но почему-то эти результаты остались без внимания. В 1979 году еще трое астрономов объявили о том, что с помощью других методов получили результаты, близкие по значению к полученным Вокулером.


Ученые, наконец, обратили внимание на эти результаты, и кое-кто задумался, — не надо ли по-новому взглянуть на проблему возраста Вселенной. Боль­шинство продолжало придерживаться прежнего ре­зультата — 18 миллиардов лет, но по мере того, как поя­влялись новые данные, свидетельствовавшие в поль­зу 10 миллиардов лет, начинал раз­гораться спор. Да­вайте немного задержимся на этом и разберемся в сути этого спора. Мы уже ви­де­­­­­­­­­­ли, что Хаббл, соотнеся расстояние до галактик с их красным смещением, предсказал рас­ширение Вселенной. На его диаграмме особо важным представляется угол наклона прямой, проходящей че­рез точки; значение H называется постоянной Хаббла. Важность этой по­стоянной определяется ее связью с возрастом Вселенной. Она дает нам представление о скорости расширения, и если мы повернем расшире­ние или, что-то же самое, время вспять (пре­дположив, что оно течет в обратную сторону), то Вселенная со­жмется. Тогда возраст Вселенной будет определяться тем временем, которое потребуется всему веществу, чтобы сжаться до размеров точки. Если бы Вселенная расширялась равномерно, то ее возраст был бы обрат­ным величине H (1/H). Однако существует явное сви­детельство в пользу того, что это не соответствует действительности: похоже, что расширение замедля­ется. Значит, чтобы уз­нать реальный возраст Вселен­ной, нам следует помнить об этом и соответственно знать, как быстро расширение замедляется.






С помощью своей лестницы, которая помогла ему вычислить расстояние до далёких звезд, Хаббл получил в 1929 году значение Н,
которое соответствовало пора­зительно малому возрасту — 2 миллиарда лет. Пора­зительным его можно считать потому, что результаты геологических исследований дают гораздо большее значение, и эти данные весьма надежны. Замеша­тельство длилось недолго: Вальтер Бааде из обсерва­тории Маунт-Вилсон вскоре нашел ошибку в методи­ке, с помощью которой Хаббл определял расстояние. Он пользовался зависимостью период — светимость для цефеид (чем больше период цефеид, тем больше абсолютная светимость) для определения расстояния до ближайших галактик, но звезды переменной свети­мости в этих галактиках не были обычными цефе­идами и, следовательно, указанной зависимости не подчинялись. С поправками возраст Вселенной удва­ивался. Через несколько лет Сэндейдж заметил, что Хаббл принял скопления звезд за отдельные звезды в более отдаленных галактиках. С этими исправлени­ями возраст еще раз удвоился.


Так возраст Вселенной был определен в 10 милли­ардов лет. Однако Сэндейджа и Таммана это не удов­летворило. Они тщательно проанализировали работу Хаббла, расширив ее рамки. В их распоряжении были новейшая техника и методика калибровки, не говоря уже о 200-дюймовом телескопе-рефлекторе Паломар-ской обсерватории. В результате их исследований воз­раст Вселенной еще раз удвоился и составил около 18 миллиардов лет, так что некоторое время никто не смел и подумать о новых вычислениях.


Пока Сэндейдж и Тамман проверяли и корректи­ровали работы Хаббла, в Техасском университете усердно трудился де Вокулер. Подобно Сэндейджу, он пользовался космической лестницей, идя по сту­пенькам вглубь ко все более слабым галактикам. Од­нако что-то его беспокоило. Через несколько лет он внимательно изучил окружающую нас группу галак­тик, называемую местным скоплением, и обнаружил, что она является частью гораздо большей группы — скопления скоплений. Доминирующим в группе было гигантское скопление, называемое Девой (располо­женное в направлении созвездия Девы). Де Вокулер пришел к выводу, что это колоссальное скопление воздействует на нашу галактику, поэтому он и полу­чил гораздо меньшее число, чем Сэндейдж и Тамман, которые не учли этого обстоятельства.


Однако никто не обращал на идеи де Вокулера ни малейшего внимания. Наверное, легче было считать, что мы живем в обычной области Вселенной, а де Во­кулер уверял, что это аномальная область. Для разре­шения противоречия требовался какой-то совершен­но новый метод. Такой метод (который, однако, не позволил найти окончательное решение) появился в 1979 году — Марк Ааронсон из обсерватории Стю­арда, Джон Хачра из Гарварда и Джереми Моулд из национальной обсерватории Китт-Пик объявили о том, что полученное ими значение Н
лежит между значе­ниями, предложенными де Вокулером и Сэндейджем. Однако большинство их измерений, как и измерения Сэндейджа, проводились в направлении скопления Девы. Де Вокулер предложил провести их в каком-либо другом участке неба, подальше от Девы. И ко­нечно же, полученное значение оказалось очень близ­ким к результату де Вокулера.


Ааронсон с сотрудниками использовали метод, раз­работанный намного раньше Брентом Талли из Гавайского университета и Ричардом Фишером из Нацио­нальной обсерватории. Талли и Фишер определяли массу галактик, проводя наблюдения на длине волны 21 см. Линия спектра, соответствующая этой длине волны при вращении галактик расширяется, т. е. чем больше скорость вращения галактики, тем шире соот­ветствующая линия. Поскольку известно, что наибо­лее массивные, самые крупные галактики вращаются быстрее других, Талли и Фише­ру оставалось лишь из­мерить ширину линии и тем самым определить «вес» галактики, а из это­го, в свою очередь, ее истинную яр­кость, или светимость. Узнав светимость и определив из на­блюдений видимую яркость, легко найти рассто­яние до галактики.


Несмотря на простоту, метод вызывает на практи­ке ряд трудностей. Прежде всего, отнюдь не все галак­тики повернуты к нам «лицом»; обычно они видны под каким-то углом, а значит, большая часть их света поглощается пылью. Для учета этого обстоятельства приходится вводить соответствующие поправки, что и сделали Талли с Фишером. Тем не менее их резуль-: таты подверглись суровой критике.


Заинтересовавшись этим методом, Ааронсон с со­трудниками решили измерять не видимый свет га­лактик, а их инфракрасное излучение, тем самым избежав необходимости введения поправок. Инфра­красное излучение не задерживается пылью, а потому и нет необходимости делать поправку на поворот га­лактик. В итоге ученые получили значение Я, согла­сующееся с результатом измерения де Вокулера.


Ааронсон и его коллеги вскоре убедились, что мы в самом деле живем в аномальной области Вселенной. Мы находимся на расстоянии примерно 60 миллионов световых лет от суперскопления в Деве и стре­мимся к нему под действием притяжения с весьма большой скоростью. Значит, для того чтобы получить верное значение постоянной Хаббла, нужно из скоро­сти разбегания галактик (с которой они удаляются от нас) вычесть эту скорость.


Правда, Сэндейдж и Тамман не убеждены, что мы живем в аномальной области. Их измерения, как утверждают авторы, не дают оснований считать, что мы движемся к скоплению в Деве, а следовательно, не нужно вводить соответствующую поправку. Инте­ресно, что наша собственная скорость, измеренная Ааронсоном, не совпадает со значением, полученным де Вокулером. По мнению Ааронсона, мы движемся к скоплению в Деве не по прямой, а по спирали; такой вывод основывается на весьма сложной модели вра­щающегося суперскопления.


Итак, возникает проблема — действительно ли мы живем в аномальной области, как свидетельствуют последние результаты, или же правы Сэндейдж и Тамман? Казалось бы, решить ее довольно легко, ведь в предыдущей главе рассказывалось о реликтовом из­лучении, заполняющем всю Вселенную, причем в раз­ных направлениях его температура различна. По дан­ным таких измерений, мы движемся к созвездию Льва со скоростью примерно 600 км/с, но Лев отстоит от центра скопления в Деве примерно на 43°! Итак, одни измерения свидетельствуют, что мы движемся в на­правлении Льва, а другие — что к Деве. Какие из них верны? Пока неизвестно.


Похоже, что мы зашли в тупик, и в вопросе о воз­расте Вселенной — 10 ей миллиардов лет или 20? К счастью, есть еще два метода определения возраста Вселенной. Правда, и тот и другой позволяют найти лишь возраст нашей Галактики, но поскольку доволь­но хорошо из­вестно, насколько Вселенная старше Га­лактики, эти методы весьма надежны. В первом из них используются гигантские скопления звезд, так называемые глобулярные скопления; они окружают нашу Галактику подобно тому, как пчелы окружают улей. Если построить зависимость абсолютной, или истинной, яркости от температуры поверхности звезд, входящих в такие скопления, откроется весьма инте­ресный результат. (Такой график называется диа­граммой Герцшпрунга — Рессела, по именам впервые построивших его ученых.)






Прежде чем рассказать о полученном результате, рассмотрим типичную диаграмму Герцшпрунга — Рес­села. Если скопление относительно молодое, боль­шинство точек лежит на диагонали, называемой глав­ной последовательностью; кроме того, есть несколько точек в верхнем правом углу и совсем мало — в ниж­нем левом. На главной последовательности представ­лены все звезды — от небольших красных карликов до голубых гигантов. Одной из особенностей этой диаграммы является то, что звезда, по мере старе­ния, сходит с главной последовательности. Самые верхние точки, соответствующие голубым гигантам, сходят первыми, а по ходу старения скопления с главной последовательности сходит все больше и больше звезд, причем всегда, начиная сверху диаграм­мы. Это означает, что чем старше скопление, тем ко­роче его главная последовательность. Особое значе­ние имеет то, что точка, выше которой нет звезд (она называется точкой поворота), позволяет оценить воз­раст скопления.


Диаграмма Герцшпрунга — Рессела для молодого скопления (сле­ва) и та же диаграмма для старого скопления (справа); показана точка поворота


При рассмотрении диаграммы Герцшпрунга — Рессела для глобулярных скоплений становится вид­но, что у них точка поворота находится почти вни­зу главной последовательности. Это означает, что они очень стары; их возраст — от 8 до 18 миллиардов лет, т. е. Вселенной должно быть больше 10 милли­ардов лет.


Второй метод заключается в наблюдении скоро­стей распада различных радиоактивных веществ. Ме­рой скорости этого процесса служит так называемый период полураспада — время, в течение которого рас­падается половина ядер данндго вещества. Измеряя периоды полураспада атомов радиоактивных элемен­тов в Солнечной системе, можно определить ее воз­раст, а на его основе — возраст нашей Галактики. И вновь результаты указывают на то, что Галактике больше 10 миллиардов лет.


Сотрудник Чикагского университета Дэвид Шрамм и некоторые другие ученые применили ряд мето­дов определения возраста Галактики, а затем обра­ботали результаты для получения наиболее вероятного значения. Таким образом они получили оценку 15-16 миллиардов лет. Но и это убедило отнюдь не всех. Гарри Шипмен из университета Делавэра недав­но провел исследование эволюции белых карликов и определил их число в нашей Галактике; теперь он утверждает, что Млечному Пути не более 11 миллиар­дов лет. С его выводами согласны Кен Джейнс из Бос­тонского университета и Пьер де Марк из Йеля. Они внимательно изучили методику определения возраста глобулярных скоплений на основе графиков зависи­мости светимость — температура и пришли к выводу, что учет погрешностей в наблюдениях звезд, а также некоторых теоретических допущений позволяет сни­зить оценку их возраста до 12 миллиардов лет.


Вот так обстоит дело. Пока с уверенностью можно утверждать лишь то, что возраст Вселенной составля­ет от 10 до 20 миллиардов лет.


Это означает, что около 10-20 миллиардов лет назад произошел колоссальный взрыв, в результате которого родилась наша Вселенная.


Сейчас галактики разбегаются от нас во всех направлениях, а если представить себе, что мы движемся во времени вспять, то нам покажется, что Вселенная сжимается. Те­перь галактики расположены так далеко друг от друга, что для их сближения потре­бовалось бы около 16 миллиардов лет. Представим себе, что мы бессмертные существа, путешествующие против течения времени; для нас миллиард лет – одна минута. Мы увидим вспыхивающие и гаснущие в нашей Галактике звезды; они образуются из межз­вездных газа и пыли, проходят свой жизненный цикл и либо взрываются, разбрасывая вещество в пространство, либо медленно угасают. Издала все это похоже на рас­цвеченную огнями новогоднюю елку. Двигаясь дальше назад во времени, мы увидим, что светимость некоторых галактик немного возрастает, но постепенно все они тус­кнеют из-за того, что в них становится все больше газа и все меньше звезд. Но вот погасла последняя звезда, и не осталось ничего кроме гигантской бурлящей массы газа. Каждая из огромных спиралей газа растет в размерах, постепенно приближаясь к другим спиралям, а потом, когда Вселенной становится лишь несколько сот миллионов лет от роду, эти колоссальные газовые сгустки рассеиваются и все пространство ока­зывается заполненным очень разреженным, но весьма однородным газом. Тем не менее, в нем все же есть заметные флуктуации плотности. Астрономы пока еще точно не знают, отчего они образовались, но скорее всего это было вызвано своеобразной ударной волной, пронесшейся через несколько секунд (или минут) после взрыва.


В возрасте около 10 миллионов лет Вселенная имела температуру, которую мы сейчас называем комнатной. Может показаться, что она в то время была абсолютно пуста и черна, но на самом деле там было сильно разреженной вещество будущих галактик.


Чем ближе к моменту рождения Вселенной, тем больше разогревается газ; за несколько миллионов лет до этого события появляется слабое свечение, которое постепенно приобретает темно-красный оттенок, - температура на этом этапе со­ставляет примерно 1000 К. Вселенная производит жутковатое впечатление, но все еще прозрачна и однородна; постепенно желтым. И вдруг при температуре 3000 К. про­исходит нечто странное – до этого момента Вселенная была прозрачной (правда, смотреть в ней было не на что, но свет сквозь нее проходил), а теперь все заволок ослепительно сияющий желтый туман, через который ничего не видно.


Двигаясь еще дальше назад во времени, мы увидим, что Вселенная состоит почти целиком из плотного излучения, в которое кое-где вкраплены ядра атомов. По мере роста температуры яркость тумана все возрастает. Повсюду появляются легкие частицы и их античастицы – Вселенная на этом этапе представляет собой смесь излучения, эле­ктронов, нейтронов и их античастиц. Наконец, при еще более высоких температурах, появляются тяжелые частицы их античастицы, а также черные дыры. Вселенная пре­вращается в невообразимую кашу – частицы и излучение врезаются друг в друга с колоссальной силой. Теперь она очень мала, размером с надувной мяч, а еще через долю секунды может превратиться в сингулярность. Но до того перед нами закроется “занавес”. Мы не в состоянии сказать, что в действительности произойдет в последнюю долю секунды в последнюю долю секунды, потому что не в силах заглянуть за “зана­вес”, о котором я говорил, занавес нашего неведения. При таких условиях отказывает не только общая теория относительности, но, возможно, и квантовая теория, поэтому мы и не можем сказать наверняка, появляется ли сингулярность.



Абсолютная сингулярность.


Вселенская сингулярность или состояние близкое к ней, о чёрной дыре. В отличие от черный дыр, которые имеют массу, равную массе крупной звезды; теперь же речь идет о сингулярности, содержащей всю массу Вселенной. Но помимо этого есть еще одно фундаментальное отличие. В случае сколлапсировавшей звезды был горизонт событий, в центре которого помещалась сингулярность; иными словами, черная дыра находилась где-то в нашей Вселенной. В случае вселенской черной дыры сразу же возникают трудности – несли вся наша Вселенная сколлапсировала в черную дыру, значит все вещество и пространство исчезли в сингулярности, то есть не останется ничего, в чем можно было бы находится – не будет Вселенной.


Более того, в случае вселенской черной дыры (может быть, вернее будет сказать, квазичерной дыры) нельзя быть уверенным в том, что имеешь дело с истинной сингулярностью.


Но даже если сингулярности не было, остается вопрос, что было раньше, намного раньше. Один из ответов на него может выглядеть так: раньше была другая Вселенная, которая сколлапсировала, превратившись или почти превратившись в сингулярность, из которой затем возникла наша Вселенная. Возможно, что такие коллапсы и возрождения происходили неоднократно. Такую модель называют осциллирующей моделью Вселенной.


Посмотрим теперь, когда отказывает общая теория относительности; это происходит через 10(-43) с после начала отсчета времени (интервал, называемый план-ковским временем). Это как раз тот момент, когда задер­гивается «занавес»; после него во Вселенной царит пол­ный хаос, но с помощью квантовой теории мы можем хотя бы грубо представить себе, что там происходило.


Ранее уже упоминалось о точке зрения Стивена Хокинга, согласно которой на самой ранней стадии развития Вселенной образовывались маленькие чер­ные дыры; он также дока­зал, что эти черные «дыроч­ки» испаряются примерно через 10(-43) с. Отсюда вытекает, что по истечении этого интервала времени во Вселенной существовала странная «пена» из чер­ных дыр. Сотрудник Чикагского университета Дэвид Шрамм так выразился по этому поводу: «...Мы прихо­дим к представлению о пространстве-времени как о пене из черных мини-дыр, которые внезапно появля­ются... ре комбинируют и образуются заново». В этот момент пространство и время были совершенно не похожи на теперешние — они не обладали непрерыв­ностью. Эта пена представляла собой по сути дела смесь пространства, времени, черных дыр и «ничего», не связанных друг с другом. О таком состоянии мы знаем очень мало.


Температура в момент, о котором идет речь, со­ставляла примерно 10(32) К — вполне достаточно для образования частиц. Частицы могут образовываться Посмотрим теперь, когда отказывает общая теория относительности; это происходит через 10(-43) с после начала отсчета времени (интервал, называемый план-ковским временем). Это как раз тот момент, когда задер­гивается «занавес»; после него во Вселенной царит пол­ный хаос, но с помощью квантовой теории мы можем хотя бы грубо представить себе, что там происходило. Ранее уже упоминалось о точке зрения Стивена Хокинга, согласно которой на самой ранней стадии развития Все­ленной образовывались маленькие чер­ные дыры; он также доказал, что эти черные «дыроч­ки» испаряются примерно через 10(-43) с. Отсюда вытекает, что по истечении этого интервала времени во Вселенной существовала странная «пена» из чер­ных дыр. Сотрудник Чикагского университета Дэвид Шрамм так выразился по этому поводу: «...Мы прихо­дим к представлению о пространстве-времени как о пене из черных мини-дыр, которые внезапно появля­ются... ре комбинируют и образуются заново». В этот момент пространство и время были совершенно не похожи на теперешние — они не обладали непрерыв­ностью. Эта пена представляла собой по сути дела смесь пространства, времени, черных дыр и «ничего», не связанных друг с другом. О таком состоянии мы знаем очень мало.


Температура в момент, о котором идет речь, со­ставляла примерно 10(32) К — вполне достаточно для образования частиц. Частицы могут образовываться двумя способами. В первом случае при достаточно высокой энергии (или, что-то же самое, при высокой температуре) рождаются электроны и их античасти­цы — это так называемое рождение пар. Например, при температуре 6 миллиардов градусов столкнове­ние двух фотонов может дать пару электрон — пози­трон. При еще более высоких температурах могут рождаться пары протон — антипротон и так далее; в целом, чем тяжелее частица, тем большая энергия требуется для ее рождения, т. е. тем выше должна быть температура.






Упрощенное изображение эпох Вселенной, начиная с Большого


Взрыва


Раньше мы видели, что есть и второй способ обра­зования пар частиц — они могут появляться сразу же за горизонтом событий черных мини-дыр под дейст­вием приливных сил. Мы также говорили о том, что при испарении черных мини-дыр рождались ливни частиц, а поскольку вселенская черная дыра подобна мини-дыре, там происходило то же самое.


Итак, есть два способа рождения частиц. Какой же из них следует считать более важным? По мнению ас-1трономов, основная масса частиц образовалась за счет наличия высоких энергий, так как только на самом раннем этапе приливные силы были настолько велики, чтобы приводить к рождению частиц в значительных количествах. Однако многое еще здесь неясно, и впоследствии может оказаться, что второй метод также играет существенную роль.


Краткий период времени, следующий непосредственно за моментом 10(-43) с, обычно называют квантовой эпохой.


В эту эпоху все четыре фундаменталь­ных взаимодействия были объединены. Вскоре после момента 10(-43) с единое поле распалось, и от него отделилась первая из четырех сил. Позднее по очереди отделились другие силы, которые изменялись по величине. В конце концов получились четыре знакомых нам взаимодействия.



Раздувание.


Одна из трудностей, на которую наталкивается традиционная теория Большого взрыва, — необходи­мость объяснить, откуда берется колоссальное коли­чество энергии, требующееся для рождения частиц. Не так давно внимание ученых привлекла видоизмененная теория Большого взрыва, которая предлагает I ответ на этот вопрос. Она носит название теории раздувания и была предложена в 1980 году сотрудником Массачусетского технологического института Аланом Гутом. Основное отличие теории раздувания от тра­диционной теории Большого взрыва заключается в описании периода с 10(-35) до 10(-32) с. По теории Гута примерно через 10(-35) с Вселенная переходит в состояние «псевдовакуума», при котором ее энергия исключительно велика. Из-за этого происходит чрез­вычайно быстрое расширение, гораздо более быстрое, чем по теории Большого взрыва (оно называется раз­дуванием). Через 10(-35) с после образования Все­ленная не содержала ничего кроме черных мини-дыр и «обрывков» пространства, поэтому при резком раз­дувании образовалась не одна вселенная, а множест­во, причем некоторые, возможно, были вложены друг в друга. Каждый из участков пены превратился в от­дельную вселенную, и мы живем в одной из них. От­сюда следует, что может существовать много других вселенных, недоступных для нашего наблюдения.


Хотя в этой теории удается обойти ряд трудностей традиционной теории Большого взрыва, она и сама не свободна от недостатков. Например, трудно объяс­нить, почему, начавшись, раздувание в конце концов прекращается. От этого недостатка удалось освобо­диться в новом варианте теории раздувания, появив­шемся в 1981 году, но в нем тоже есть свои трудности.



Эпоха адронов.


Через 10(-23) с Вселенная вступила в эпоху адронов, или тяжелых частиц. Поскольку адроны участву­ют в сильных взаимодействиях, эту эпоху можно на­звать эпохой сильных взаимодействий. Температура была достаточно высока для того, чтобы образовыва­лись пары адронов: мезоны, протоны, нейтроны и т. п., а также их античастицы. Однако на заре этой эпохи температура была слишком высока, и тяжелые части­цы не могли существовать в обычном виде; они при­сутствовали в виде своих составляющих — кварков. На данном этапе Вселенная почти полностью состоя­ла из кварков и антикварков. Сейчас свободные квар­ки не наблюдаются. Из современных теорий следует, что они попали в «мешки» и не могут их покинуть. Однако некоторые ученые считают, что где-то еще должны остаться кварки, дошедшие до нас из тех дале­ких времен. Возможно, они столь же многочисленны, как атомы золота, но пока обнаружить их не удалось. В соответствии с этой теорией, после того как тем­пература достаточно упала (примерно через 10(-6) с), кварки быстро собрались в «мешки». Такой процесс носит название кваркадронного перехода. В то время Вселенная состояла в основном из мезонов, нейтро­нов, протонов, их античастиц и фотонов; кроме того, могли присутствовать более тяжелые частицы и не­много черных дыр. При этом на каждую частицу при­ходилась античастица, они при соударении аннигили­ровали, превращаясь в один или несколько фотонов. Фотоны же, в свою очередь, могли образовывать пары частиц, в результате чего Вселенная, пока пары рож­дались и аннигилировали примерно с одинаковой ско­ростью, пребывала в равновесном состоянии. Однако по мере расширения температура падала и рождалось все меньше и меньше пар тяжелых частиц. Постепенно число аннигиляции превысило число рождений, и в результате почти все тяжелые частицы исчезли. Если бы число частиц и античастиц было в точности одинаково, то они исчезли бы полностью. На самом деле это не так, и свидетельство тому — наше суще­ствование.


Наконец температура упала настолько, что пары тяжелых частиц уже не могли рождаться. Энергии хватало лишь для образования легких частиц (лептонов). Вселенная вступила в эпоху, когда в ней содер­жались в основном лептоны и их античастицы.



Эпоха лептонов.


Примерно через сотую долю секунды после Боль­шого взрыва, когда температура упала до 100 милли­ардов градусов, Вселенная вступила в эпоху лептонов. Теперь она походила на густой суп из излучения (фотонов) и лептонов (в основном электронов, по­зитронов, нейтрино и антинейтрино). Тогда также на­блюдалось тепловое равновесие, при котором электрон-позитронные пары рождались и аннигилировали примерно с одинаковой скоростью. Но кроме того, во Вселенной находились оставшиеся от эпохи адронов в небольших количествах протоны и нейтроны — примерно по одному на миллиард фотонов. Однако в свободном состоянии нейтроны через 13 мин распа­даются на протоны и электроны, т. е. происходил еще один важный процесс — распад нейтронов. Правда, температура в начале этой эпохи была еще достаточ­но высока для рождения нейтронов при соударении электронов с протонами, поэтому равновесие сохра­нялось. А вот когда температура упала до 30 миллиар­дов градусов, электронам уже не хватало энергии для образования нейтронов, поэтому они распадались в больших количествах.


Еще одно важное событие эпохи лептонов — разде­ление и освобождение нейтрино. Нейтрино и анти­нейтрино образуются в реакциях с участием протонов и нейтронов. Когда температура была достаточно вы­сока, все эти частицы были связаны между собой, а при понижении температуры ниже определенного критического значения произошло их разделение, и все частицы свободно разлетелись в пространство. По мере расширения Вселенной их температура па­дала до тех пор, пока не достигла значения около 2 К. До настоящего времени обнаружить эти частицы не удалось.



Эпоха излучения.


Через несколько секунд после Большего взрыва, когда температура составляла около 10 миллиардов градусов, Вселенная вступила в эпоху излучения. В начале этой эпохи было еще довольно много лепто­нов, но при понижении температуры до 3 миллиардов градусов (порогового значения для рождения пар леп­тонов) они быстро исчезли, испустив множество фо­тонов. В то время Вселенная состояла почти полно­стью из фотонов.


В эпоху излучения произошло событие исключи­тельной важности — в результате синтеза образо­валось первое ядро. Это как раз то событие, которое пытался объяснить Гамов; о нем речь шла раньше. Примерно через три минуты после начала отсчета времени, при температуре около миллиарда градусов, Вселенная уже достаточно остыла для того, чтобы столкнувшиеся протон и нейтрон соединились, обра­зовав ядро дейтерия (более тяжелой разновидности водорода). При соударении двух ядер дейтерия об­разовывались ядра гелия. Так за очень короткое время, примерно за 200 мин, около 25 % вещества Вселенной превратилось в гелий. Помимо того, пре­вращение водорода в гелий происходит в недрах звезд, но там образуется лишь около 1 % всей массы гелия. В эту эпоху возникли также другие элементы: немного трития и лития, но более тяжелые ядра обра­зоваться не могли. Поскольку все, о чем здесь шла речь, естественно, относится к области теории, чита­тель вправе усомниться: а так ли это в действительно­сти? Видимо, да, ведь теория прекрасно согласуется с наблюдениями, поэтому ей можно доверять. Напри­мер, согласно этой теории гелий должен составлять около 25 % вещества во Вселенной, что подтверждает­ся наблюдением.



Фоновое космическое излучение.


Вселенная продолжала расширяться и охлаждаться в течение нескольких тысяч лет. Тогда она состояла в основном из излучения с примесью некоторых частиц (нейтронов, протонов, электронов, нейтрино и ядер простых атомов). Это была довольно тоскливая Все­ленная, непрозрачная из-за густого светящегося тума­на, и в ней почти ничего не происходило. Непрозрач­ность вызывалась равновесием между фотонами и веществом; при этом фотоны были как бы привязаны к веществу. Наконец, при температуре 3000 К в ре­зультате объединения электронов и протонов образо­вались атомы водорода, так что фотоны смогли ото­рваться от вещества. Как раньше нейтрино, так теперь фотоны отделились и унеслись в пространство.


Наверное, это напоминало чудо — густой туман внезапно рассеялся и Вселенная стала прозрачной, хотя и ярко красной, так как температура излучения была еще довольно высока (чуть ниже 3000 К). Но по­степенно она падала — сначала до 1000 К, затем до 100 К и наконец достигла нынешнего значения 3 К.


Существование такого фонового излучения пред­сказал в 1948 году Г. Гамов, но в своих рассуждениях он допустил массу ошибок, как численных, так и смысловых. Несколько лет спустя его студент испра­вил эти ошибки и рассчитал, что температура фо­нового излучения сейчас должна быть около 5 К. Считалось, однако, что это излучение обнаружить не удастся, в частности, из-за света звезд. Вот почему прошло 17 лет, прежде чем фоновое излучение было зарегистрировано.


В начале 60-х годов компания «Белл телефон» по­строила в Холмделе, шт. Нью-Джерси, специальный радиотелескоп для приема микроволнового излуче­ния. Он использовался для обеспечения связи со спутником «Телстар». Двое работавших на нем уче­ных, Арно Пензиас и Роберт Уилсон, решили также исследовать с его помощью микроволновое излучение нашей Галактики.


Однако до начала исследований им нужно было обнаружить и устранить все возможные помехи как от самого телескопа, так и от окружающих наземных источников. Ученые решили поработать на волне 7,35 см, но вскоре обнаружили, что на ней постоянно присутствует какой-то шум. Несмотря на все усилия, избавиться от него не удавалось, хотя вначале ис­следователям казалось, что это не составит труда. Шум так мешал работе, что Пензиас и Уилсон решили проверить, не является ли его источником само небо, Как ни странно, но оказалось, что это так. Куда бы ученые не наводили телескоп, шум не исчезал.






Они и не подозревали о том, что совсем рядом, в Принстонском университете, два физика, Роберт Дикке и Джим Пиблз, обсуждали возможность нали­чия во Вселенной излучения, дошедшего до нас с момента Большого взрыва. Пиблз рассчитал, что его температура должна быть около 5 К, и ученые обрати­лись к своим коллегам П. Роллу и Д. Уилкинсону с просьбой попробовать обнаружить это излучение. Как видно, никто из них не слышал о предсказании Гамова, сделанном много лет назад.


Кривая излучения. Если фоновое космическое излучение дейст­вительно дошло до нас от Большого взрыва, оно должно описы­ваться такой же зависимостью


Пензиас узнал об идеях Дикке и позвонил ему, чтобы сообщить о регистрации «шума», — похоже, это как раз то, что он ищет. Дикке приехал в Холмдел, и вскоре стало ясно, что помехи действительно пред­ставляют собой искомое излучение. Ученые опубликовали полученные результаты, не упомянув ни Гамо­ва, ни его студента. Когда Гамов познакомился с этой публикацией, он направил Дикке весьма сердитое письмо. Позднее Пензиас и Уилсон были удостоены за свое открытие Нобелевской премии.


Естественно, требовались дополнительные доказа­тельства того, что зарегистрированный шум представ­лял собой фоновое космическое излучение, ведь Пен­зиас и Уилсон получили на кривой излучения лишь одну точку при длине волны 7,35 см. Ранее мы виде­ли, что любое нагретое тело излучает энергию, а кри­вая излучения (зависимость количества излучаемой энергии от длины волны) имеет строго определенный вид. Если какое-либо тело полностью поглощает па­дающую на него энергию излучения, то такая кривая носит название кривой излучения черного тела. При плавном переходе от больших длин волн к мень­шим кривая поднимается вверх, проходит через пик и затем резко опускается вниз. Согласно расчетам, кривая, соответствующая фоновому космическому излучению, должна была бы иметь ту же форму, что и для черного тела.


Пензиас и Уилсон получили первую точку на кри­вой, а вскоре Ролл и Уилкинсон поставили вторую. Узнав об этом, другие ученые стали проводить допол­нительные измерения на различных длинах волн. Бы­ла здесь, однако, одна трудность. Дело в том, что точ­ки ложились по одну сторону пика, а важно было получить их и по другую сторону, чтобы убедиться, что кривая идет так, как нужно. Атмосфера не пропу­скает излучение таких длин волн, т. е. на Земле про­делать эти измерения невозможно. Каково же было потрясение ученых, когда точка, полученная установленной на ракете аппаратурой, оказалась гораздо вы­ше расчетной кривой. И каково же было их облегче­ние, когда выяснилось, что детектор случайно зареги­стрировал тепловое излучение двигателя ракеты. Последующие измерения подтвердили, что за пиком действительно идет спад, как и следует из теории. Та­ким образом, с определенной долей уверенности мож­но утверждать, что это излучение дошло до нас от вре­мен Большого взрыва.


В первом приближении получалось, что фоновое (или, как его еще называют, реликтовое) излучение имеет одинаковые характеристики во всех направле­ниях, т. е. изотропно. Но не опровергнут ли этот ре­зультат более точные измерения? Поставим и такой вопрос: а что если излучение анизотропно (различно в разных направлениях)? Немного поразмыслив, мы поймем, что если температура реликтового излучения выше в каком-то одном направлении, то, значит, мы движемся в направлении роста температуры. Это как с туманом, — если он густеет, значит, мы движемся в ту сторону, где он плотнее, и наоборот, — если он ре­деет, мы движемся в противоположную сторону. Пер­вые измерения, выполненные в 1969 и 1971 годах, да­вали основания предполагать наличие анизотропии, поэтому две группы ученых, одна из Калифорнийско­го университета в Беркли, а другая из Принстона, ре­шили провести детальные измерения за пределами ат­мосферы.


Группа исследователей из Беркли выполнила пер­вые измерения в 1976 году при помощи самолета-шпиона У-2. И в самом деле, оказалось, что имеется небольшая анизотропия, по величине которой уда­лось установить, что мы движемся в направлении созвездия Льва со скоростью около 600 км/с. Позже выяснилось, что туда летит не только Солнечная сис­тема, но и вся наша Галактика, а также некоторые из соседних галактик.



Эпоха галактик.


После отрыва излучения от вещества Вселенная по-прежнему состояла из довольно однородной смеси частиц и излучения. В ней уже содержалось вещество, из которого впоследствии образовались галактики, но пока его распределение оставалось в основном рав­номерным. Известно, однако, что позже наступил этап неоднородности, иначе сейчас не было бы галактик. Но откуда же взялись флуктуации, приведшие к по­явлению галактик?


Астрономы полагают, что они проявились очень рано, практически сразу же после Большого взрыва. Что их вызвало? Точно неизвестно и, может быть, ни­когда не будет известно наверняка, но они каким-то образом появились практически в самый первый мо­мент. Возможно, поначалу они были довольно велики, а затем сгладились, а может быть, наоборот, увеличи­вались с течением времени. Известно, однако, что по окончании эпохи излучения эти флуктуации стали расти. С течением времени они разорвали облака час­тиц на отдельные части. Эти гигантские клубы веще­ства расширялись вместе с Вселенной, но постепен­но стали отставать. Затем под действием взаимного притяжения частиц начало происходить их уплотне­ние. Большинство этих образований поначалу мед­ленно вращалось, и по мере уплотнения скорость их вращения возрастала.


Турбулентность в каждом из фрагментов была весьма значительна, и облако дробилось еще больше, до тех пор, пока не остались области размером со звез­ду. Они уплотнялись и образовывали так называемые протозвезды (облако в целом называется протогалактикой). Затем стали загораться звезды и галактики приобрели свой нынешний вид.


Эта картина довольно правдоподобна, но все же остается ряд нерешенных проблем. Как, например, выглядели р

анние формы галактик (их обычно назы­вают первичными галактиками)? Так как пока ни одна из них не наблюдалась, сравнивать теоретические по­строения не с чем.


Есть и другие трудности. Задумаемся над тем, что мы видим, вглядываясь в глубины космоса. Ясно, что при этом мы заглядываем в прошлое. Почему? Да пото­му, что скорость света не бесконечна, а имеет предел; для того чтобы дойти до нас от удаленного объекта, све­ту требуется некоторое время. Например, галактику, на­ходящуюся от нас на расстоянии 10 миллионов свето­вых лет, мы видим такой какой она была 10 миллионов лет назад; галактику на расстоянии 3 миллиарда свето­вых лет мы наблюдаем отстоящей от нас во времени на 3 миллиарда лет. Всматриваясь еще дальше, мы ви­дим все более тусклые галактики, и наконец они ста­новятся вовсе не видны — за определенной границей можно наблюдать только так называемые радиогалак­тики, которые, похоже, во многих случаях находятся в состоянии взрыва. За этой границей расположены особенно странные галактики — мощные источники радиоизлучения с чрезвычайно плотными ядрами.


Наконец, на самой окраине Вселенной можно разглядеть только квазары. Их обнаружили в начале 60-х годов, и с тех пор они остаются для нас загадкой. Они испускают больше энергии, чем целая галактика (а ведь в нее входят сотни миллиардов звезд), при весьма малом размере — не больше Солнечной систе­мы. По сравнению с количеством излучаемой энергии такой размер просто смехотворен. Как может столь малый объект давать столько энергии? На эту тему в последние годы много рассуждали, в основном при­менительно к черным дырам, но ответа пока нет. В со­ответствии с наиболее приемлемой моделью, квазар — это плотный сгусток газа и звезд, находящийся по­близости от черной дыры. Энергия выделяется, когда газ и звездное вещество поглощаются черной дырой. Важно помнить, что мы видим все эти объекты та­кими, какими они были давным-давно, когда Вселен­ной было, скажем, всего несколько миллионов лет от роду. Поскольку на самой окраине видны только квазары, напрашивается вывод, что они есть самая ранняя форма галактик. Ближе к нам находятся ра­диогалактики, так, может быть, они произошли от квазаров? Еще ближе обычные галактики, которые, стало быть, произошли от радиогалактик? Получает­ся как бы цепь эволюции: квазары, радиогалактики и обычные галактики. Хотя такие рассуждения кажут­ся вполне разумными, большинство астрономов с ни­ми не соглашается. Одно из возражений — разница в размерах между квазарами и галактиками. Следует, однако, упомянуть, что недавно вокруг некоторых квазаров обнаружены туманности. Возможно, эти ту­манности затем конденсируются в звезды, которые объединяются в галактики. Из-за упомянутой выше и других трудностей большая часть астрономов пред­почитает считать, что и на самых дальних рубежах есть первичные галактики, но они слишком слабы и потому не видны. Более того, недавно обнаружены новые свидетельства, подтверждающие такое предпо­ложение, — зарегистрировано несколько галактик, на­ходящихся на 2 миллиарда световых лет дальше, чем самая дальняя из известных галактик. Они настолько слабы, что для получения их изображения на фото­пластинке понадобилась экспозиция 40 ч.


Мы рассмотрели теории возникновение Вселенной. Теперь рассмотрим ее возможную дальнейшую судьбу.



Дальнейшая судьба Вселенной.


Вопрос о дальнейшей судьбе Вселенной — несо­мненно, важная часть полной единой теории. Теория Фридмана — просто одна из ее составляющих; единая теория обязана идти дальше. Из теории Фридмана следует только, что Вселенная, в зависимости от сред­ней плотности вещества, будет либо расширяться веч­но, либо прекратит расширение и начнет сжиматься. Теория не говорит, как именно это будет происходить. Конечно, у нас есть кое-какие догадки, которые ка­жутся справедливыми, но, по правде говоря, это лишь предположения.


Итак, начнем с рассмотрения альтернатив, предла­гаемых теорией Фридмана. Чтобы их легче было по­нять, прибегнем к аналогии. Предположим, что вверх подбрасывают шарик; его движение будет постепенно замедляться, затем он остановится и начнет падать вниз. Высота его подъема зависит от начальной скоро­сти, а также от силы тяжести. Если бросить его с до­статочно большой скоростью, то он, в принципе, может никогда не упасть на землю. Эта скорость называется скоростью убегания.


Примерно так же обстоит дело и с Вселенной. Около 18 миллиардов лет назад произошел Большой взрыв, в результате которого возникла Вселенная. Осколки разлетелись в разные стороны с неимоверной скоростью и по-прежнему летят в виде галактик. В этом случае нет какого-то объекта типа Земли, ко­торая притягивала к себе шарик, но есть гравитацион­ное взаимодействие всех галактик. Это притяжение замедляет расширение Вселенной, в результате чего замедляется и разбегание галактик. Наиболее удален­ные по расстоянию, а значит, и по времени, замедля­ются больше всего.


Естественно, возникает вопрос: хватит ли этого за­медления, чтобы разбегание галактик остановилось полностью? Иными словами, достаточно ли взаимно­го гравитационного при­тяжения для преодоления расширения? Легко видеть, что это зависит от напря­женности гравитационного поля, которая, в свою оче­редь, зависит от средней плотности вещества во Все­ленной (количества вещества в единице объема). Иначе этот вопрос можно сформулировать так: доста­точно ли велика средняя плотность вещества во Все­ленной, чтобы остановить ее расширение? Пока дать определенный ответ невозможно, но, как мы видели раньше, похоже, что средняя плотность близка к так называемой критической.


Открыта или замкнута Вселенная зависит от того, насколько ее плотность отличается от критической, равной примерно 0,5 • 10(-30) г/см3
. Если плотность больше этого значения, то Вселенная замкнута и в конце концов сожмется в точку; если же меньше, то она открыта и будет расширяться вечно. Может по­казаться, что решить вопрос о замкнутости или от­крытости Вселенной совсем нетрудно, для этого нуж­но лишь измерить среднюю плотность и сравнить ее с критической. К сожалению, здесь возникают труд­ности, и весьма серьезные. Можно довольно точно оценить плотность видимого вещества, но она очень далека от критической — для того, чтобы Вселенная была замкнутой, видимого вещества должно быть раз в 100 больше.


Известно, однако, что есть довольно много «неви­димой материи» — небольших слабых звезд, пыли, об­ломков камней, черных дыр и излучения. Обеспе­чивает ли она замкнутость Вселенной? На первый взгляд кажется, что нет, и такой вывод подтверждали исследования, проведенные в 70-х годах Готтом, Гун­ном, Шраммом и Тинсли. Однако после 1980 года был сделан ряд важных открытий, которые заставили пересмотреть отношение к этой проблеме.



Скрытая масса.


Дополнительная масса, требующаяся для того, что­бы Вселенная была замкнутой, называется скрытой массой. Это не очень удачное название, поскольку вполне может оказаться, что ее вообще нет. Однако имеются серьезные свидетельства того, что она суще­ствует, но в странном, непривычном виде. Давно изве­стно, что в галактиках есть много невидимого вещест­ва, часть его относится к отдельным галактикам, а часть — к их скоплениям.


Рассмотрим эти случаи по очереди и начнем с от­дельных галактик. Определить полную массу галак­тики довольно легко. Для этого вовсе не нужно рас­считывать средние массы звезд, а затем суммировать их по всему пространству; это слишком трудно, а то и невозможно. Применяется другой метод, и чтобы понять его, рассмотрим вначале Солнечную систему. Известно, что планеты движутся вокруг Солнца по орбитам, параметры которых подчиняются трем зако­нам, открытым Иоганном Кеплером несколько веков назад. Один из этих законов позволяет определить скорость планеты, если известна масса всего веще­ства, заключенного в пределы ее орбиты (в случае Солнечной системы почти вся масса сосредоточена в Солнце). Закон, естественно, работает и в другую сто­рону — зная скорость планеты, можно определить пол­ную массу объектов, находящихся внутри ее орбиты. Такой подход полностью применим и к галакти­кам. Наше Солнце, например, находится на расстоя­нии примерно 3/5 от центра Галактики. Измерив его орбитальную скорость, можно узнать массу всех звезд, расположенных между нами и центром Галактики. Расчет, конечно, не позволит вычислить полную мас­су Галактики, для этого потребуется какая-нибудь звезда на ее периферии.


На самом деле для этого даже не нужна звезда, го­дится любой объект. Астрономы несколько лет назад измерили скорость внешних облаков водорода в со­седних с нами спиралях галактик и обнаружили, что они движутся гораздо быстрее, чем должны были бы согласно принятой оценке массы галактики. Изучив эту проблему глубже, они пришли к выводу, что на окраинах этих галактик должно быть значительное количество вещества в форме гало. К удивлению уче­ных выяснилось, что масса таких гало превышает мас­су звезд.


Из чего же они состоят? Ясно, что не из звезд, ина­че они были бы видны. Возможно, это очень слабые звезды или обломки, пыль, газ. Если гало есть у всех галактик, то, конечно, масса их значительно возрастет, а следовательно, увеличится и масса всей Вселенной. Но окажется ли этого достаточно, чтобы «замкнуть» Вселенную? Вычисления показали, что нет, но исто­рия на этом не кончается.


Большинство галактик во Вселенной образуют скопления; иногда в скопления входят только две-три галактики, но обычно гораздо больше. В наше скоп­ление, например, их входит около 30. Научившись определять массу отдельных галактик, астрономы об­ратились к их скоплениям. Просуммировав массы от­дельных галактик, они обнаружили, что их недоста­точно для того, чтобы силы притяжения удерживали скопление вместе как единое целое. Тем не менее они явно не собирались распадаться — ничто не указыва­ло на разлет отдельных галактик. Некоторым скопле­ниям не хватало сотен собственных масс, чтобы удер­жать их вместе силами гравитационного притяжения. Даже добавление дополнительной массы, заключен­ной в гало, не спасало положения. Учитывая это, легко понять, почему ученые говорят о скрытой массе.


Если она действительно существует, то в какой форме? Очевидно, в такой, которую нелегко обнару­жить. Это может быть, например, газообразный водо­род — либо нейтральный атомарный, либо ионизован­ный (т. е. получивший заряд в результате потери электронов). Однако при ближайшем рассмотрении оказывается, что нейтральный водород на эту роль не подходит. Он излучает на волне 21 см и соответству­ющие наблюдения показали, что как между ближни­ми, так и между дальними галактиками водорода со­всем немного.


Одно время считалось, что подойдет ионизованный водород, поскольку фоновое рентгеновское излучение во Вселенной связывалось именно с ним. Однако позже выяснилось, что это излучение скорее всего вызыва­ется квазарами. Тогда пришла очередь нейтронных звезд, белых карликов и черных дыр, но и они в конце концов отпали. Черные дыры должны были бы быть сверхмассивными (иметь массу порядка галактичес­кой) или же встречаться очень часто, что маловероят­но. Исследования показали, что хотя в центре многих, если не всех, галактик могут быть массивные черные дыры, нет свидетельств существования таких изоли­рованных дыр в скоплениях, иначе была бы вероят­ность заметить их и в нашей Галактике.


В качестве возможных кандидатов рассматрива­лись и фотоны, ведь энергия есть одна из форм суще­ствования материи. Однако и в этом случае расчеты показали, что их вклад явно недостаточен.


Создавалось впечатление, что во Вселенной просто недостаточно материи и потому она незамкнута. Тем не менее некоторые ученые были убеждены, что в кон­це концов недостающая масса найдется. И вот насту­пила кульминация... В предыдущей главе говорилось, что весь дейтерий во Вселенной образовался через не­сколько минут после Большого взрыва. Хотя основ­ная его часть быстро превратилась в гелий, некоторое количество все же осталось, и если его измерить, то можно ответить на вопрос, замкнута ли Вселенная. Чтобы понять почему, посмотрим, что происходило в то время. Известно, что при соударении ядер дейте­рия образуется гелий. Если плотность Вселенной бы­ла высока, то соударений было много и образовалось значительное количество гелия; если же плотность бы­ла низка, то осталось много дейтерия. Поскольку ко­личество дейтерия во Вселенной со временем измени­лось незначительно, измерение его должно показать, замкнута ли Вселенная. Такие измерения, конечно же, были проделаны, и вот их результат — Вселенная не замкнута. В 70-е годы такой результат казался вполне убедительным, а когда аналогичные оценки были про­деланы для гелия и совпали с данными по дейтерию, вопрос, казалось, был решен окончательно — Вселен­ная открыта.


Однако через несколько лет ученые нашли изъян в этой аргументации. Из нее следовало лишь то, что Вселенная не может оказаться замкнутой частицами, называемыми барионами. К барионам относятся и протоны и нейтроны, из которых состоит большинст­во известных нам объектов — звезды, космическая пыль, водород и даже образовавшиеся в результате коллапса звезд черные дыры. Может возникнуть во­прос: а есть ли что-нибудь кроме барионов? Да, это лептоны и так называемые экзотические частицы. Лептоны чересчур легки, чтобы заметно увеличить массу, а вот экзотические частицы в последнее время привлекают к себе большое внимание. Первыми в по­ле зрения попали нейтрино, и в течение какого-то вре­мени астрономы были убеждены, что эта частица по­может «замкнуть» Вселенную. Нейтрино почти так же распространены, как фотоны, примерно миллиард на каждый атом вещества; долгое время считалось, что их масса покоя равна нулю. Конечно, массой они все-таки обладают, ведь любая форма энергии имеет массу, но ее явно не хватит, чтобы остановить расши­рение Вселенной.


Но вот в конце 70-х годов было высказано предпо­ложение, что нейтрино имеют массу покоя. Как бы мала она ни была, из теорий следовало, что в целом она может внести существенный вклад в массу Вселенной. Эксперимент по проверке этого предположе­ния был выполнен группой ученых, в которую входи­ли Ф. Рейнес, X. Собел и Э. Пасиерб. Они не измеряли массу непосредственно, а выбрали другой путь. Ранее было обнаружено, что фактически существует три ти­па нейтрино — один, связанный с электроном, дру­гой — с более тяжелой, хотя и подобной электрону ча­стицей, называемый мюоном, а третий — с еще более тяжелой частицей, «тау», обнаруженной в 1977 году. Согласно теории, все три разновидности нейтрино могут превращаться друг в друга. Иными словами, они могут менять тип, но только в том случае, если их масса больше нуля. Рейнес, Собел и Пасиерб провели соответствующий эксперимент и пришли к выводу, что им удалось зарегистрировать переход от одного типа нейтрино к другому.


Однако другие ученые, попытавшиеся повторить эксперимент, не смогли подтвердить этот результат. Стало уже казаться, что Рейнес с коллегами допусти­ли ошибку, но тут пришло известие о том, что группе советских ученых удалось измерить массу нейтрино непосредственно. Но и здесь не все так просто. Мно­гие пробовали проверить полученный в СССР ре­зультат, но пока безуспешно. Вопрос о массе покоя нейтрино до сих пор остается открытым.


Конечно, даже если у нейтрино не окажется массы покоя, есть другие экзотические частицы, и некоторые из них заслуживают пристального внимания. Так, предполагается, что гравитационное поле переносит­ся гипотетическими частицами — гравитонами. Пока они не обнаружены, но некоторые ученые убеждены в их существовании. Из теории супергравитации сле­дует, что гравитону должно сопутствовать гравитино; более того, из нее вытекает, что партнеры должны быть у всех частиц: у фотона — фотино, а у W — вино. Все такие частицы-партнеры имеют общее название «ино». Некоторые ученые полагают, что благодаря своей массе они могут внести существенный вклад в среднюю плотность вещества во Вселенной. Но ес­ли даже эти частицы не подойдут для уготованной им роли (или вообще не будут найдены), то есть еще один кандидат, который пока, правда, существует только на бумаге. Его называют аксионом, и он силь­но отличается от «ино», в частности он гораздо легче. Пока все эти частицы — лишь плод воображения уче­ных, но все же они привлекают серьезное внимание. Другая частица, о которой в последнее время много разговоров, — магнитный монополь. Это очень мас­сивная частица с одним магнитным полюсом. Каж­дый, кто знает, что такое магнит, скажет, что это не­возможно. Известно, что при разрезании полосового магнита на две части получаются два магнита, каждый из которых имеет северный и южный полюсы. Разре­зая такой магнит, мы будем получать тот же резуль­тат, сколько бы раз мы это не повторяли. Получить, та­ким образом, изолированный северный или южный магнитный полюс нельзя. Но еще в 30-е годы Дирак предсказал, что такая частица должна существовать. Многие экспериментаторы бросились проверять его теорию, но поиски монополей ни к чему не привели, и постепенно интерес к ним угас. Но вот в 1974 году сотрудник Государственного университета Утрехта в Нидерландах Дж. Хофт и независимо от него совет­ский ученый А. Поляков показали, что существование монополей следует из некоторых единых теорий поля. Это возродило интерес к монополям, и многие возобновили их поиск. Среди них был сотрудник Стан-фордского университета Блас Кабрера, который, про­ведя детальные расчеты, пришел к выводу, что можно регистрировать примерно по одному монополю в год. Он построил установку и стал ждать. Наконец его терпение было вознаграждено: 14 февраля 1982 года установка зарегистрировала первый монополь. Сооб­щение взбудоражило научный мир, хотя и было встречено с изрядным скептицизмом, а так как второй монополь обнаружить не удалось, скептицизма не убавлялось. Более того, другие попытки обнаружить монополи результатов не дали.


Заслуживает упоминания еще один, последний кандидат. Это особые другие черные дыры, так называемые реликтовые. Неплохими кан­дидатами считаются все черные дыры, которые обра­зовались раньше дейтерия. Правда, они должны быть относительно невелики, но все-таки на их массу мож­но рассчитывать. Ограничения накладывает также и испарение Хокинга; он показал, что все черные ды­ры, масса которых в момент образования была мень­ше 10(15) г, к настоящему времени уже должны были испариться. Отсюда следует, что внимания заслужи­вают только те из них, масса которых составляет от 10(15) до 10(32) г. Поскольку примерно таков диапа­зон масс планет, их называют планетарными черными дырами.


Если учесть вклад всех перечисленных выше видов масс, то может показаться, что суммарной массы вполне достаточно для обеспечения замкнутости Все­ленной. Однако сотрудник Чикагского университета Дэвид Шрамм с этим не согласен; из расчетов его группы следует, что средняя плотность вещества очень близка к пограничной — той, которая лежит на границе между замкнутой и открытой Вселенной.


Другие методы решения замкнутости Вселенной.


Видимо, наиболее надежным способом ответа на вопрос, замкнута или открыта Вселенная, является точное измерение ее средней плотности, и в последнее время именно он привлекает наибольшее внимание. Но это отнюдь не единственный способ; можно, на­пример, использовать диаграмму Хаббла. Если уско­рение галактик одинаково до самых дальних окраин Вселенной, то на диаграмме получится прямая; если же галактики замедляются, линия будет искривлена. По степени этого искривления можно понять, доста­точно ли замедление для прекращения расширения Вселенной.


Метод кажется довольно простым — достаточно построить график, охватывающий самые дальние, «приграничные» районы Вселенной, и определить степень искривления получившейся линии. Но как и при определении средней плотности, здесь тоже не обходится без трудностей. Уже отмечалось, что для удаленных районов Вселенной провести точные из­мерения очень трудно; кроме того, возникают и дру­гие проблемы. Вглядываясь в космические дали, мы заглядываем в прошлое, а значит, видим галактики такими, какими они были давным-давно. При этом, естественно, возникают вопросы, связанные с эволю­цией Вселенной: как эти галактики выглядят сегодня, насколько они изменились? Из многих теорий сле­дует, что галактики (в особенности эллиптические) раньше были гораздо ярче, т. е. нам представляется, что они находятся ближе, чем на самом деле. Из дру­гих же теорий вытекает, что некоторые галактики мо­гут расти, поглощая соседние, а потому сейчас они го­раздо ярче, чем в прошлом, и значит, кажутся нам расположенными дальше.


Исследование дальних границ Вселенной дает мно­го свидетельств процесса эволюции. За некоторым пределом наблюдаются уже только радиогалактики, а
на самых окраинах видны только квазары. Попытка использовать эти объекты для нанесения точек на ди­аграмму Хаббла совершенно бессмысленна; такие точ­ки оказываются далеко в стороне от прямой, соответ­ствующей обычным галактикам. Более того, раз точно не известно, что такое квазары, вряд ли можно ожидать от них помощи. Поскольку они так далеки (и имеют небольшой возраст), то, вероятно, могут являться пер­вичными формами галактик, хотя с таким представле­нием согласны очень немногие астрономы.


Еще один метод решения нашей проблемы основан на так называемом подсчете чисел. Как и в предыду­щих случаях, основная идея проста, но, к сожалению, приводит к неоднозначным результатам. Нужно лишь подсчитать в заданном направлении, насколько хва­тит глаз, количество галактик или объектов других типов, а затем построить график зависимости числа зарегистрированных объектов от расстояния. Таким образом, можно определить глобальную кривизну; если она положительна, Вселенная замкнута, а если отрицательна — открыта. В плоской Вселенной точки на построенном графике были бы распределены рав­номерно по всем направлениям и для всех расстоя­ний. При положительной кривизне следует ожидать избытка точек в близких районах, а при отрицатель­ной — напротив, их недостатка. Широкомасштабные исследования, проведенные в 70-х годах в Университе­те штата Огайо, казалось бы, продемонстрировали из­быток точек, а значит, и замкнутость Вселенной, одна­ко недавние проверки не подтверждают этого вывода.


Заслуживает упоминания и метод определения угловых размеров. Суть его состоит в тщательном из­мерении диаметра галактик конкретного вида; затем аналогичное измерение производится для другой га­лактики того же типа, расположенной гораздо дальше, но на известном расстоянии. Если пространство ис­кривлено, то в измерение диаметра как бы вносится ошибка — его величина будет казаться больше при по­ложительной кривизне и меньше при отрицательной.



Судьба замкнутой Вселенной.


Вероятно, Вселенная так близка к «водоразделу», что, обсуждая ее дальнейшую судьбу, приходится рас­сматривать как открытый, так и замкнутый варианты.


Для начала, предположим, что Вселенная замкну­та. В таком случае в течение 40-50 миллиардов лет ничего существенного не произойдет. По мере увели­чения размеров Вселенной галактики будут все даль­ше разбегаться друг от друга, пока в какой-то момент самые дальние из них не остановятся и Вселенная не начнет сжиматься. На смену красному смещению спе­ктральных линий придет синее. К моменту максимального расширения большинство звезд в галактиках погаснет, и останутся в основном небольшие звезды, бе­лые карлики и нейтронные звезды, а также черные дыры, окруженные роем частиц — в большинстве сво­ем фотонов и нейтронов. Наконец, через примерно 100 миллиардов лет начнут сливаться воедино галак­тические скопления; отдельные объекты сначала бу­дут сталкиваться очень редко, но со временем Вселен­ная превратится в однородное «море» скоплений. Затем начнут сливаться отдельные галактики, и в кон­це концов Вселенная будет представлять собой одно­родное распределение звезд и других подобных объ­ектов.


В течение всего коллапса в результате аккреции и соударений станут образовываться, и расти черные дыры. Будет повышаться температура фонового излу­чения; в конце концов, она почти достигнет температу­ры поверхности Солнца и начнется процесс испаре­ния звезд. Перемещаясь на фоне ослепительно яркого неба, они подобно кометам будут оставлять за собой состоящий из паров след. Но вскоре все заполнит рас­сеянный туман и свет звезд померкнет. Вселенная по­теряет прозрачность, как сразу же после Большого взрыва. (В гл. 6 мы видели, что/ранняя Вселенная была непрозрачной, пока ее температура не упала примерно до 3000 К; тогда свет стал распространять­ся без помех.)


По мере сжатия Вселенная, естественно, будет проходить те же стадии, что и при создании Вселенной, но в обратном порядке. Температура будет рас­ти, и сокращающиеся интервалы времени начнут иг­рать все большую роль. Наконец галактики тоже ис­парятся и превратятся в первичный «суп» из ядер, а затем распадутся и ядра. Вселенная быстро проско­чит через лептонную и адронную эпохи к хаосу. В эпоху адронов ядра развалятся на кварки. На этом этапе Вселенная станет крохотной и состоящей толь­ко из излучения, кварков и черных дыр. В последнюю долю секунды коллапс дойдет почти до сингулярно­сти, а затем произойдет «большой пшик».



Отскок.


Что случится во время «большого пшика» — неиз­вестно, поскольку нет теории, которая годилась бы для описания сверхбольших плотностей, возникаю­щих до появления сингулярности; можно лишь стро­ить предположения. Большинство из них основано на идее «отскока» — внезапного прекращения сжатия, нового Большого взрыва и нового расширения. Одной из причин первоначального введения идеи отскока была возможность обойти неприятную с точки зрения многих астрономов проблему возникновения Вселен­ной. Если отскок произошел один раз, то он мог слу­чаться неоднократно, может быть, бесчисленное коли­чество раз, поэтому не нужно и беспокоиться о начале времен.


К сожалению, при подробной проработке такой идеи оказалось, что и отскок не решает проблемы. В интервалах между отскоками звезды излучают зна­чительное количество энергии, которая затем кон­центрируется при достижении состояния, близкого к сингулярности. Эта энергия должна постепенно на­капливаться, из-за чего промежуток времени меж­ду последовательными отскоками будет возрастать. Значит, в прошлом эти промежутки были короче, а когда-то, в пределе, промежутка не было вовсе, т. е. мы приходим к тому, чего старались избежать, — про­блеме начала Вселенной. Согласно расчетам, от нача­ла нас должно отделять не более 100 циклов расшире­ний и сжатий.


Многие предпринимали попытки обойти эту про­блему. Томми Голд, например, разработал теорию, со­гласно которой в момент наибольшего расширения время начинает течь вспять. Излучение устремится обратно к звездам и Вселенная «омолодится». В та­ком случае она будет равномерно осциллировать меж­ду коллапсом и максимальным расширением.


Весьма интересную, но очень спорную теорию пред­ложил Джон Уилер. Воспользовавшись идеей Хо-кинга, согласно которой фундаментальные константы «теряют» свои числовые значения при достаточно вы­соких плотностях, он показал, что цикл осцилляции не обязательно должен удлиняться. Из-за принципа неопределенности значения констант утрачиваются, когда Вселенная сжимается до почти бесконечной плотности. После возможного отскока и нового рас­ширения эти константы могут получить совершенно иные значения. Продолжительность циклов в таких обстоятельствах также будет меняться, но случайным образом; одни циклы станут очень длинными, а дру­гие короткими.



Судьба открытой Вселенной.


В противоположность замкнутой, открытая Все­ленная продолжает расширяться вечно. Основным от­личием от процессов, описанных в предыдущем раз­деле, является разница во временах. Раньше речь шла о периодах в 50 или 100 миллиардов лет, а сейчас при­дется рассматривать столь большие промежутки вре­мени, что понадобятся числа с большим показателем степени, например, будут упоминаться интервалы до 10(100) лет. Если трудно представить себе 100 милли­ардов лет, то о таком числе и говорить нечего.


Первые события будут, конечно, аналогичны тем, которые происходят в замкнутой Вселенной. Звезды постепенно постареют, превратившись с течением времени в красных гигантов, либо взорвутся, либо медленно сколлапсируют и умрут. Некоторые из них, прежде чем погаснуть, столкнутся с другими звезда­ми. Такие столкновения очень редки, и с момента об­разования нашей Галактики (по крайней мере, в ее внешних областях, где мы обитаем) их было совсем немного. Однако за триллионы и триллионы триллио­нов лет таких столкновений произойдет множество. Часть из них лишь сбросит в пространство планеты, а в результате других звезды окажутся на совершенно иных орбитах, некоторые даже вне пределов нашей Галактики. Если подождать достаточно долго, то нам покажется, что внешние области галактик испаряются.


Не выброшенные из галактик звезды в результате столкновений, скорее всего, будут притягиваться к центру, который в конце концов превратится в гигантскую черную дыру. Примерно через 10(18) лет боль­шинство галактик будет состоять из массивных черных дыр, окруженных роем белых карликов, нейтронных звезд, черных дыр, планет и различных частиц.


Дальнейшие события вытекают из современной еди­ной теории поля, называемой теорией великого объе­динения,1
о ней речь пойдет позже. Из этой теории сле­дует, что протон распадается примерно за 10(31) лет. Сейчас ведется несколько экспериментов по обнару­жению такого распада, а значит, и по проверке теории, Согласно ей, протоны должны распадаться на элек­троны, позитроны, нейтрино и фотоны. Отсюда следу­ет, что, в конце концов, все, что состоит во Вселенной из протонов и нейтронов (а их не содержат только черные дыры), распадется на эти частицы. Вселенная превратится в смесь из них и черных дыр, и будет на­ходиться в таком состоянии очень, очень долго. Когда-нибудь испарятся маленькие черные дыры, а вот с большими возникнут трудности. Фоновое излучение к тому времени будет очень холодным, но все же его температура останется чуть выше, чем у черных дыр. Однако по мере расширения Вселенной ситуация из­менится — температура излучения станет ниже, чем на поверхности черных дыр, и те начнут испаряться, медленно уменьшаясь в размерах; на это потребуется примерно 10(100) лет. Затем Вселенную заполнят электроны и позитроны, которые, вращаясь друг во­круг друга, образуют огромные «атомы». Но посте­пенно позитроны и электроны, двигаясь по спирали, столкнутся и аннигилируют, в результате чего оста­нутся только фотоны. Во Вселенной не будет ничего, кроме излучения.


Мы рассмотрели судьбу как открытой, так и за­крытой Вселенной. Что ее ждет, пока неизвестно. Если даже Вселенная когда-нибудь сколлапсирует, неизве­стно, произойдет ли потом «отскок».



Заключение.


В данной работе я постарался рассмотреть современные взгляды на возникновение, дальнейшее существование и конец Вселенной. Теперь обобщим выше изложенный матерьял.


Когда-то наша Вселенная была по своим размерам меньше атома. Она начала своё существование как особая точка, не имеющая ни размеров, ни массы. Теория "Большого Взрыва" - самая распространённая в наши дни теория, объясняющая происхождение Вселенной - предполагает, что Вселенная начала своё существование примерно пятнадцать миллиардов лет назад. Сначала она представляла собой невообразимо малый, яркий, горячий и плотный объект.


Затем произошёл Большой Взрыв, в результате которого выделилось огромное количество энергии. В первые минуты взрыва образовались водород и гелий - самые лёгкие частицы в таблице Менделеева. Вероятно, они сконцентрировались в виде облачных образований, которые примерно четырнадцать миллиардов лет назад начали сгущаться благодаря собственной массе.


В течение следующих двух миллиардов лет из этих облаков образовались первые галактики. Наша галактика - Млечный Путь образовалась примерно десять миллиардов лет назад. Внутри неё образовались все звёзды и планеты, включая и нашу Землю, которая образовалась из окружающих её газовых облаков.


Сейчас радиус Вселенной составляет около 15 миллиардов световых лет. В процессе расширения некоторая часть массы Вселенной сконденсировалась и образовала бесчисленные миллиарды звёзд, которые сосредоточены в галактиках. Известная Вселенная включает 10 миллиардов галактик, объединённых в скопления, а те, в свою очередь, в сверхскопления, отделённые друг от друга огромными расстояниями космического пространства.


Кроме теории Большого Взрыва большой популярностью пользуется теория стабильного состояния. Правда, открытие в 1965 году КМФИ ( космическое микроволновое фоновое излучение ) сильно поколебало её позиции. Согласно этой теории у Вселенной не было начала и не будет конца. Она также утверждает, что плотность её остаётся неизменной благодаря постоянному созданию нового вещества (водорода - каждые 20 лет по атому на 1 литр пространства ), которое компенсирует её расширение.


Значит, согласно теории стабильного состояния Вселенная будет расширяться бесконечно. Но есть ещё две теории. Согласно одной из них Вселенная прекратит расширение и стабилизируется, когда достигнет определённых размеров. Последняя же теория утверждает, что, в конце концов, Вселенная перестанет расширяться, а затем под действием гравитационных сил начнёт сжиматься в одну точку. В результате произойдёт так называемый “Большой Треск”. Но теория Большого взрыва вызывает больше доверия и для это есть причины.


Некоторые явления во Вселенной являются прямым следствием событий далекого прошлого. Их называют реликтовыми. Основные из них следующие:


1) фоновое излучение (температура около 3 К);


2) избыток гелия (около 25 % общей массы);


3) однородность и изотропность пространства;


4) наличие флуктуации, следующее из существо­вания галактик;


5) соотношение между веществом и излучением.


В идеале теория, предложенная учеными (в нашем случае теория Большого взрыва), должна предсказы­вать определенные события, скажем, наличие излу­чения с температурой 3000 К. Применяя нашу тео­рию, можно проследить изменение этой температуры до наших дней. Теория предсказывает, что сейчас она должна составлять около 3 К. Мы начинаем поиски излучения и, как уже говорилось, находим его. То же относится и к гелию: теория предсказывает, что гелий должен составлять около 25 % всего вещества во Все­ленной, и мы видим, что это число очень близко к ре­альному. С другими реликтами, впрочем, возникают сложности: например, мы до сих пор не знаем точно, в результате каких флуктуации появились галактики. Кроме того, теория Большого взрыва предсказывает существование большого числа магнитных монополей (магнитные монополи — это частицы с единствен­ным магнитным полюсом, тогда как у обычного маг­нита полюсов всегда два — северный и южный). Однако до сих пор ни одного монополя не обнаруже­но. Теория раздувания помогает решить некоторые из этих проблем, но она же рождает новые трудности.


Изучение далёких галактик предоставляет ещё одно доказательство истинности теории "Большого Взрыва". Некоторые из данных галактик удалены от нас на расстояние 13 миллиардов световых лет. Эти галактики мы видим так, как они выглядели через 2 миллиарда лет после Большого Взрыва. Тот факт, что они имеют вид более уплотнённый, чем ближние галактики, доказывает, что Вселенная со временем увеличивается в объёме, а когда-то была гораздо меньше и плотнее.


В надежде определить происхождение Вселенной учёные пытаются воссоздать условия, возникшие непосредственно сразу после взрыва. В специальном ускорителе частиц разгоняются два пучка субатомных частиц. Постепенно их скорости приближаются к скорости света, пучки направляются навстречу друг другу и сталкиваются. Благодаря энергии столкновения возникают новые частицы, оставляющие следы, различимые детектором, в пузырьковой камере.


По результатам исследований учёные могут судить о ранней Вселенной, поскольку энергия сталкивающихся частиц подобна энергии частиц, существовавших в первые секунды после Большого Взрыва.


Итак, Вселенная произошла посредством Большого Взрыва и этому есть множество доказательств. Теория же "Стабильного Состояния" уже почти полностью опровергнута и с каждым годом теряет свои позиции. Но всё же космос до сих пор остаётся тайной. Мы ещё очень мало знаем о нашей Вселенной, а ведь неизвестно: может быть наша Вселенная является лишь малой точкой в огромной бездне космоса. Возможно, что существует множество Вселенных, а возможно и нет.


В недалеком будущем с развитием новых технологий будут выдвинуты новые теории, доказаны или опровергнуты старые – это путь человечества к будущему, к прогрессу, к истине. Вот совсем не давно для еще одного доказательства Большого взрыва 30 июня 2001 года на мысе Канаверал стартовала ракета Delta 2, которая вывела на орбиту американский исследовательский спутник MAP (Microwave Anisotropy Probe). Он будет заниматься измерениями послесвечения Большого Взрыва, в результате которого образовалась наша Вселенная. MAP должен составить объемную картину того взрыва и заглянуть в то время, когда не было никаких звезд и галактик. Он также должен ответить на вопросы: как после Большого Взрыва образовались такие сложные структуры как современные галактики? будет ли Вселенная расширяться и дальше или через некоторое время произойдет ее коллапс?


Список литературы
:


1. Белостоцкий Ю.Г. ''Единая основа Мировоздания''


СПб, 2001 – 304 с.


2. Паркер Б., ''Мечта Эйншейна, в поисках единой теории Вселенной''


СПб: Амфора, 2001 – 333 с.


3. Пригожин И.Н. ''Прошлое и будущее Вселенной''


М: Знание, 1986


4. Рузавин Г.Н., ''Концепция современного естествознания''


М: ЮНИТИ, 1997 – 214 с.


5. Фейман Р., Лейтон Р., Сэндс М. ''Фейманские лекции по физике''


М: Мир, 1977 – 439 с.


6. Хокинг С., ''Кратка история времени, от большого взрыва до черных дыр''


СПб: Амфора, 2001 – 268 с.


7. Шкловский И.С. ''Вселенная, жизнь, разум.''


М: Наука ,1980 – 325 с.


8. http://www.rol.ru/news/misc/spacenews/00/12/25_002.htm


9. http://tomsk.fio.ru/works/84/Aparowa/


10. http://www.astronomy.ru:8101/news/2001/05/08.htm


11. http://www.nature.ru/db/msg.html?mid=1168532&s=


12. http://www.newscientist.com/


13. http://klein.zen.ru/old/Large_bursh_new.htm


Словарь терминов.


Абсолютный нуль температуры
— самое низкое из все возможных значений температуры. При абсолютном нуле вещество не обладает тепловой энергией.


Аннигиляция
— процесс, при котором частица и ее античастица, сталкиваясь, взаимно уничтожают друг друга.


Античастица
— у каждой частицы материи есть соответствующая античастица. При соударении частицы и античастицы происходит их аннигиляция, в результате которой выделяется энергия и рождаются другие частицы.


Антропный принцип
— мы видим Вселенную такой, какая она есть, потому что, будь она другой, нас бы здесь не было, и мы бы не могли ее наблюдать.


Атом
— наименьшая частица обычного вещества. Атом состоит из крошечного ядра (составленного из протонов и ней тронов) и обращающихся вокруг него электронов.


Большой взрыв
— сингулярность в момент возникновения Вселенной.


Большой хлопок
— сингулярность в конечной точке существования Вселенной.


Гамма- (у-)излучение
— электромагнитное излучение с очень малой длиной волны, испускаемое при радио­активном распаде или при соударениях элементарных ча­стиц.


Голая сингулярность
— сингулярность в пространстве-вре­мени, не находящаяся внутри черной дыры.


Гравитационное взаимодействие
— самое слабое из четы­рех фундаментальных взаимодействий, обладающее большим радиусом действия. В гравитационном взаимодействии уча­ствуют все частицы материи.


Длина волны
— расстояние между двумя соседними гребнями волны или между двумя ее соседними впади­нами.


Закон сохранения энергии
— закон науки, согласно кото­рому энергия (или ее массовый эквивалент) не может ни со­здаваться, ни уничтожаться.


Квант — минимальная порция, которой измеряется испус­кание или поглощение волн.


Квантовая механика
— теория, разработанная на основе квантово-механического принципа Планка и принципа не­определенности Гейзенберга.


Квантово-механический принцип Планка
(закон излуче­ния Планка) — состоит в том, что свет (или любые другие клас­сические волны) может испускаться или поглощаться только дискретными порциями — квантами — с энергией, пропорцио­нальной их частоте.


Кварк
— элементарная (заряженная) частица, участвую­щая в сильном взаимодействии. Протоны и нейтроны состоят каждый из трех кварков.


Конфайнмент
— невылетание, удержание цветных кварков и глюонов внутри адронов.


Координаты
— числа, определяющие положение точки в пространстве и во времени.


Космология
— наука, занимающаяся изучением Вселенной как целого.


Красное смещение
— вызванное эффектом Доплера по­краснение света, испускаемого удаляющейся от нас звездой.


Масса
— количество вещества, содержащееся в теле. Мера инерции тела или степень его сопротивления ускорению.


Нейтрино
— легчайшая (возможно, безмассовая) эле­ментарная частица вещества, участвующая только в слабых и гравитационных взаимодействиях.


Нейтрон
— незаряженная частица, очень близкая по свой­ствам к протону. Нейтроны составляют более половины час­тиц, входящих в состав большинства атомных ядер.


Нейтронная звезда
— холодная звезда, существующая вследствие отталкивания нейтронов, обусловленного принци­пом Паули.


Общая теория относительности
— созданная Эйнштейном теория, в основе которой лежит предположение о том, что законы науки должны быть одинаковы для всех наблюдате­лей независимо от того, как движутся эти наблюдатели. В ОТО существование гравитационного взаимодействия объясняется искривлением четырехмерного пространства-времени.


Позитрон
— античастица (положительно заряженная) эле­ктрона.


Поле
— нечто, существующее во всех точках пространства и времени, в отличие от частицы, которая существует только в одной точке в каждый момент времени.


Протон
— положительно заряженная частица. Протоны об­разуют примерно половину всех частиц, входящих в состав ядер большинства атомов.


Радиоактивность
— самопроизвольное превращение одно­го атомного ядра в другое.


Световая секунда (световой год)
— расстояние, проходи­мое светом за одну секунду (за один год).


Сильное взаимодействие
— самое сильное и самое корот­кодействующее из четырех фундаментальных взаимодейст­вий. Благодаря сильному взаимодействию кварки удержива­ются внутри протонов и нейтронов, а протоны и нейтроны, собравшись вместе, образуют атомные ядра.


Сингулярность
— точка пространства-времени, в которой кривизна его становится бесконечной.


Слабое взаимодействие
— второе по слабости из четырех известных взааимодействий. Обладает очень коротким радиу­сом действия. В слабом взаимодействии принимают участие все частицы материи, но в нем не участвуют частицы — пере­носчики взаимодействия.


Спектр
— расщепление волны (например, электромагнит­ной) на частотные компоненты.


Теорема о сингулярности
— теорема, в которой доказыва­ется, что при определенных условиях сингулярность должна существовать и что, в частности, началом Вселенной должна быть сингулярность.


Ускорение
— скорость изменения скорости какого-либо объекта.


Ускоритель частиц
— устройство, которое с помощью эле­ктромагнитов дает возможность ускорять движущиеся заря­женные частицы, постоянно увеличивая их энергию.


Фаза
— для волны — положение точки в цикле в опреде­ленный момент времени: мера того, находится ли точка на гребне, во впадине или где-нибудь в промежутке.


Фон микроволнового излучения
— излучение, возникшее при свечении горячей ранней Вселенной (называется реликто­вым). Оно сейчас испытывает такое сильное красное смещение, что регистрируется не в виде света, а в виде волн микровол­нового диапазона (радиоволны с сантиметровыми длинами волн).


Фотон
— квант света.


Частично-волновой
дуализм — лежащее в основе квантовой механики представление о том, что не существует различия между частицами и волнами, частицы могут иногда вести се­бя как волны, а волны — как частицы.


Частота
— для волны это число полных циклов в секунду.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Начало и конец Вселенной

Слов:12051
Символов:91761
Размер:179.22 Кб.