Билет
1
1.
Сущность прикладной
лингвистики
как особого
подхода к языковым
явлениям. Характерные
черты прикладных
методик.
В
языкознании
всегда присутствовали
три глобальных
исследовательских
направления:
· теоретическое
(объяснение
языковых систем
и процессов)
· описательное
(конкретное
описание языковых
явлений)
· прикладное
(совершенствование
языковой системы).
В
рамках последнего
направления
сформировалась
научная дисциплина,
которая получила
название прикладной
лингвистики.
Ее отличает
подход к языку
как к деятельности,
а не мертвому
продукту.
Прикладная
лингвистика
· это
комплексная
научная дисциплина,
изучающая язык
в различных
ситуациях его
применения
и разрабатывающая
методы совершенствования
языковых систем
и языковых
процессов.
· учение
о методах решения
разнообразных
практических
задач с использованием
знаний о языке
· учение
о совершенствовании
языковой способности
человека и
общества в
целом.
Термин
прикладная
лингвистика
появился в
конце 20 гг. 20 в.,
когда была
осознана
необходимость
строгого научного
решения прикладных
задач с использованием
методов формального
лингвистического
анализа письменных
и акустико-лингвистического
анализа устных
сообщений.
За
рубежом под
ПЛ часто понимают
совершенствование
методов преподавания
языка (дидактическая
лингвистика).
В нашей стране
ПЛ понимают
как компьютерную
лингвистику,
которая становится
сейчас все
более широкой
дисциплиной
почти синонимом
ПЛ.
Синонимы
ПЛ: компьютерная
Л, структурная
Л, машинная Л,
статистическая
Л, математическая
Л, искусственный
интеллект (ИИ),
...
ПЛ
требует строгого
структурного
подхода к языку
и отводит важную
роль математике.
Основные
задачи ПЛ:
· автоматическое
распознавание
и синтез речи
· автоматические
методы переработки
текстовой
информации
· создание
автоматизированных
систем информационного
поиска
· составление
автоматических
словарей и
систем машинного
перевода
· разработка
методов автоматического
аннотирования,
реферирования
и перевода
· разработка
экспертных
систем
· лингвистическое
обеспечение
АСУ
· стандартизация
научно-технической
терминологии
Прикладные
модели отличаются
определенным
упрощением,
огрублением
языковой реальности,
но это не значит
, что они игнорируют
реальную сложность
моделируемого
объекта. Методология
прикладного
исследования
должна учитывать
многоаспектность,
многоуровневость,
открытость
языкового
механизма.
Методология
- совокупность
общих принципов,
определяющая
способ исследования
какого-либо
явления; определяет
взгляд на объект,
как к нему подойти;
философские
принципы исследования
явлений.
Метод
- определенный
тип способа
исследования,
определяемый
инструментами,
которые используются
при изучении
объекта исследования
(метод компьютерного
моделирования,
статистический
метод)
Собственно
лингвистические
методы:
· дистрибутивный
метод
· трансформационный
метод
· метод
компонентного
анализа
· метод
различительных
признаков
Методика
- конкретный
способ исследования,
определяемый
целью исследования;
может объединять
несколько
методов (методика
построения
ассоциативных
тезаурусов).
Характерные
черты прикладных
методик
· ведущая
роль метода
моделирования
· экспериментальный
характер прикладных
методик
· применение
точного метаязыка
· формализованность
самих операций
исследования
(хотя результат
может быть
приближенным)
· использование
искусственного
метаязыка
описания
· комплексное
сочетание
разных наук
2. Автоматизированные
переводные
словари. Принципы
построения.
АС - это словарь,
который при
переводе некоторые
операции делает
за человека.
Компьютерный
словарь - аналог
бумажного на
магнитных
носителях. АС
= ТБД с общеупотребительной
лексикой.
EURODICAUTOM (11, 1.200.000 ЛЕ), LEXIS
(8, 1.500.000 ЛЕ).
Отличительные
свойства АС:
многоязычие
· обратимость
( полная: всякая
ЛЕ может выступать
в роли входной
при запросе
и выходной при
ответе; частичная:
наличие индекса)
· гибкость
(удобное, упрощенное
обращение к
словарю: несколько
входов в словарь)
· динамичность
(постоянное
пополнение
словарного
состава; оперативность
редактирования)
· состав
(структура)
словаря:
макроструктура
- структура
словаря:
микроструктура
- структура
словарной
статьи
основная единица
словаря
· слово
(композиционно)
· словосочетание
(статистически);
80% обращений к
словарю - СС;
причина -уклон
в терминологию
3 главных компонента
АС:
· блок
обработки
запроса (блок
лемматизации
- сведения текстовых
форм к их словарным
(каноническим)
форме)
· блок
лексических
массивов (в
АС ЛЕ могут
храниться и
в виде основ,
и виде словоформ)
(· блок
морфологического
анализа) (иногда)
· блок
выдачи ответа
(ПЭ; главная
задача - варьирование
ответа в зависимости
от пожеланий
пользователя)
Желательно
также, чтобы
АС обладал:
· блоком
лемматизации
· алгоритмом
обработки
некорректных
запросов
· алгоритмом
словообразовательного
анализа)
АС не СМП, он
берет на себя
только работу
с лексемой,
оставляя человеку
проблему выбора
ПЭ и синтеза
текста. На вход
АПС поступают
отдельные слова
и СС, с помощью
анализа которых
можно получить
сведения о
грамм. классе
слова и его
грамм. форме.
решить на основании
этой информации
проблемы омонимии
и многозначность,
определить
синтас. функцию
ПЭ в тексте
невозможно,
поэтому разработчики
АПС таких задач
перед собой
и не ставят.
Тем не менее
индекс тематической
принадлежности
в какой-то мере
разрешает
многозначность
лексики.
Словарная
статья:
Ее структура
и наполнение
определяется
назначением
словаря.
Структура
словарной
статьи (13 зон):
1. Заголовок
- основа, СС (больше
всех по количеству),
морфема, фрагменты
текста
2.Зона лексического
грамматического
класса - ЛЕ по
частям речи,
далее - категоризация.
3. Зона морфологической
информации
4. Рубрика подрубрика
стиль (вся
информация
- в виде цифровых
кодов)
5. Зона индекса
надежности
отражает степень
общепринятости
данного ПЭ:
А - официальный
стандарт
Б - уважаемые
словари
В - тетради новых
терминов
Г - плавающие
6. Зона ПЭ (при
нескольких
ПЭ - у каждого
свой номер)
7. Зона пояснительных
помет - уточнение
значения данной
ЛЕ
· семантические
· лексические
· синтаксические
(обязат. управление)
8. Зона толкований
(для многозначных
слов и новых
терминов)
9. Зона примеров
употребления
выполняет две
функции:
· иллюстративную
· смыслоразличительную
10. Зона фразеологии.
11. Составитель
словарной
статьи
12. Источник
составления
словарной
статьи -> необязательные
13. Дата составления
словарной
статьи
Билет
7
1.
Лексикография
как прикладная
дисциплина.
Внутренняя
и внешняя типология
словарей.
Лексикография
- прикладная
лингвистическая
дисциплина,
занимающаяся
практикой и
теорией составления
словарей.
Словарь
- способ организации
и представления
знаний. Чем
полнее и адекватнее
в словаре
представлены
знания, тем
лучше словарь
выполняет свою
функцию.
Лексикография
как научная
дисциплина
носит комплексный
характер, но
определяющей
чертой лексикографии
является ее
прикладная
направленность.
Все многообразие
различных типов
словарей
(нормативные,
учебные, переводные,
терминологические,
идеологические,
этимологические
... ) получает
практическую
ориентацию
исходя из целевой
установки
словаря.
Лексикография
разрабатывает
оптимальные
средства выявления
и фиксации
семантических
фактов определенных
практических
целях. Главная
проблема в
разработке
оптимальной
стратегии новых
словарей - проблема
обоснованности
словарей как
с точки зрения
их состава, так
и в плане адекватности
подаваемой
в них информации.
Лексикография
в широком смысле
охватывает
все множество
инвентарей
языковых единиц
с приписанной
им информацией
того или иного
рода. Наиболее
богата и сложна
для отражения
семантическая
информация.
Лексикографическая
деятельность
распадается
на ряд этапов:
1. разработка
системы требований,
касающихся
внешних параметров
словаря (назначения,
круга пользователей,
инф. области
...)
2. разработка
системы требований,
касающихся
внутренней
параметров
словаря (единиц
описания, основных
свойств метаязыка.
объема, структуры,
видов словарной
информации
...)
3. формальная
инвентаризация
выбранных
подъязыков
(отбор текстов,
расписывание
контекстов,
характеристика
грамм. форм,
составление
предварительных
словников ...)
4. экспериментальные
исследования
семантики
описываемых
единиц (дистрибутивный
анализ текстов,
тесты с носителями
языка ...)
5. обобщение
экспериментальных
данных
6. построение
дефиниций на
соответствующем
метаязыке и
их проверка
в ходе новых
экспериментов
7. сбор и систематизация
дополнительной
информации
о каждой языковой
единице
8. оформление
словарных
статей
9. системный
анализ и упорядочение
словарных
статей
10. оформление
словаря в целом,
включая вспомогательные
указатели.
Аспекты
лексикографии:
· историко-филологический
- изучение истории
словарей как
части истории
культуры общества
· гносеологический
(когнитивный)
- изучение словарей
как сокровищниц
знаний. накопленных
обществом
· семантико-лексикологический
- использование
словарей для
лексико-семантического
описания языка
· прикладной
(самый важный)
- прикладная
лексикография
направлена
на совершенствование
словарей с
точки зрения
тех или иных
практических
требований
к словарям
Виды
информации
подаваемой
в словаре определяют
внутреннюю
типологию
словарей:
I.
Объекты описания:
1)
формальные/
семантические
2)
природа объектов
(лекс.-семантический
или морфо-семантический
уровень; в
парадигматическом
или в синтагматическом
аспекте)
3) статус
объекта (является
ли словарь
нормативным
или описательным)
4)
хронологический
период
5) по
сфере общения
(подъязык)
6)
степень охвата
языка
II.
Системные
свойства
1) какая
грамматическая
информация
дается об описываемых
единицах?
2) какие
стилистические
пометы используются?
3) какой
тип определения
(дефиниции)
дается?
4)
включается
ли экстралингвистическая
информация?
5) в
какой мере
учитываются
семантические
отношения?
6)
объясняется
ли мотивированность
описываемой
единицы?
III.
Актуализация
в языковой
жизни
1)
указывается
ли происхождение
единиц?
2)
указывается
ли активность
единицы в языковой
жизни (частотность)?
3)
показывается
ли реализация
единиц в контексте
IY.
Прагматика
пользователя
1)
количество
входов в словарь
2) каков
порядок расположения
единиц в словаре
(по формальному
или семантическому
признаку?
3)
имеются ли в
словаре указатели?
4) даются
ли металингвитсические
сведения (история
изучения, разные
трактовки)?
Y.
Связь с другими
языками
1)
производится
ли генетическое
сопоставление
единиц и их
значений с
родственными
языками?
2)
производится
ли типологическое
сопоставление
материала
неродственных
языков?
Цели
словаря задают
внешнюю (функциональную)
типологию
словарей:
Типы | Цель |
учебные словари | обучение |
переводные словари | перевод |
нормативные словари | нормирование |
терминологические словари | систематизация, уточнение научных понятий |
Типология
словарей по
Ожегову:
· большой
(представляет
совр. русский
язык в широкой
ист. перспективе)
· средний
(с детальной
разработкой
исторически
оправданного
стилистического
многообразия
лит. РЯ)
· краткий
(популярного
типа, стремящийся
к активной
нормализации
совр. лит. речи)
Типология
словарей по
Щербе:
· словарь-справочник
- словарь академического
типа
· энциклопедический
- общий словарь
· тезаурус
- обычный толковый
или переводной
словарь
· обычный
толковый или
переводной
словарь - идеологический
словарь
· толковый
словарь - переводной
словарь
2.
Автоматизированные
информационно-поисковые
системы: их
структуры,
функции, критерии
оценки. Информационные
языки.
АИПС
предназначены
для инф. обслуживания
пользователей
информации
в заданной
тематической
области.
2
основные задачи
АИПС:
· хранение
информации
· поиск
и выдача информации
Из
сведений о ТО.
поступающих
на хранение
в систему формируется
информационный
массив (ИМ). От
потребителя
поступают
запросы, и система
ищет сведения
в ИМ, Соответствующие
данному запросу.
Всякая поисковая
операция в
системе сводится
к сравнению
поступившего
запроса с имеющимися
в системе сведениями.
в современных
ИПС все это
происходит
автоматически.
Для этого и
запрос и сведения
должны быть
представлены
на таком языке,
который обладает
смысловой
однозначностью
- ИПЯ.
Индексирование
- перевод содержания
текста, хранящегося
в ИМ на ИПЯ. в
результате
индексирования
образуется
поисковый
образ, у документа
- ПОД, у запроса
- ПОЗ.
Критерий
смыслового
соответствия
- мера соответствия
между содержанием
запроса и документа,
достаточная
для признания
данного документа
релевантным
данному запросу.
Вводится совокупность
признаков, на
основании
которых устанавливается
степень необходимого
и достаточного
соответствия
между поисковым
предписанием
и поисковым
образом документа,
выраженными
на одном и том
же ИПЯ.
Результатом
поисковой
операции является
выборка релевантных
ПОДов.
Абстрактная
ИПС - некий
логико-семантический
аппарат, состоящий
из ИПС, правил
индексирования
и критерия
выдачи.
В
зависимости
от характера
сведений и
запроса различаются
документальная
и фактографическая
ИПС. Фактографическая
ИПС не хранит
документы, а
только факты.
Документальная
хранит документы.
Но существует
прием, позволяющий
в процессе
поиска определенного
документа
извлекать факт:
В документальной
системе хранится
информация
о содержании
документа +
документографическая
информация
(автор, год ...)
выделение
нужной пользователю
информации
осложняется
двумя обстоятельствами:
· несоответствие
между формулировкой
запроса и реальной
информацией
нужной потребителю
· перевод
запроса в ПОЗ
Мера
соответствия
документа
информационной
потребности
называется
пертенетностью.
Соответствие
документа
запросу называется
релевантностью:
· смысловая
(соответствие
запроса поисковому
предписанию)
- просто релевантность,
зависит от ИПЯ
(его семантической
силы, глубины
индексирования,
совершенства
логико-сем.
аппарата)
· формальная
(соответствие
документа
поисковому
предписанию)
ИПЯ
- специализированный
ИЯ, предназначенный
для эксплицитной
записи содержания
документов
и запросов в
форме, удобной
для автоматического
поиска.
Классификация
ИПЯ:
предкоординированные присутствует | посткоординируемые отсутствует |
Типы
классификаций
иерархическая задает | алфавитно-предметная например, | фасетная опирается |
Фасетная
классификация:
фильмы:
жанр | цвет | формат |
Ж1 Ж2 | Ц1 Ц2 черно-белый | Ф1 широкоформатный |
фасетная
формула: Ж1 Ц2
Ф1
Общие
недостатки
предкоординированных
ИПЯ:
· не
позволяют вести
поиск по заранее
непредусмотренному
сочетанию
признаков
· все
классификации
имеют недостаточную
глубину
· процесс
индексирования
принципиально
не автоматизирован,
т. е ручное
индексирование
Посткоординируемые
ИПЯ:
семантические в ЛЕ в |
оперируют | |||||
Семантические RX коды ручное | грамматики (теоретико-множественные | позиционно-скобочные сохранение | сетевые в явном |
ИПЯ
с ПСГ:
· индексирование
без лексического
контроля, до
индексирования
могут не иметь
словаря, словарь
формируется
в результате
индексирования.
· индексирование
с лексическим
контролем - все
словоформы
приводятся
к стандартному
виду
4
2. Назначение
и принципы
организации
Субд на ПЭВМ
СУБД состоит
из совокупности
взаимосвязанных
данных и набора
программ,
обеспечивающих
доступ к данным
и манипуляцию
ими. Совокупность
взаимосвязанных
данных принято
называть БД.
[Henry F. Korth]
Более узкое
определение
СУБД - набор
компьютерных
программ,
предназначенных
для создания,
поддержки, и
использования
БД
СУБД обеспечивает
доступ к данным
в процессе
диалога с
пользователем,
отвечая на его
вопросы (запросы).
Выделяется
три уровня
абстракции,
на которых
можно просмотреть
данные.
· Физический
уровень - уровень
минимальной
абстракции;
на нем хранятся
физические
данные.
· Концептуальный
уровень содержит
описание данных,
хранящихся
в БД и отношений
между ними. Он
описывает всю
БД в целом, используя
несколько
относительно
простых структур
- концептуальных
схем; предназначен
для администратора
БД.
· Уровень
представления
- уровень максимальной
абстракции;
предназначен
для основной
массы пользователей
БД. В одной БД
может одновременно
существовать
несколько
уровней представления.
· Модель
данных представляет
собой набор
концептуальных
инструментов
для описания
данных, отношений
между ними,
семантики
данных и ограничений
их целостности
(consistency constraints).
Выделяют три
класса моделей:
· логические
модели, опирающиеся
на понятие
объекта
(object-based logical models);
· логические
модели, опирающиеся
на понятие
записи; (record-based
logical models);
· физические
модели данных
(physical data models).
Объектные
логические
модели.
Объектные
логические
модели описывают
данные на
концептуальном
уровне и уровне
представления.
Они позволяют
определять
структуру и
ограничения
целостности.
На сегодняшний
день существует
свыше 30 моделей
этого класса.
Из них самые
известные:
· модель
сущность-связь;
· бинарная
модель;
· семантическая
модель данных;
· инфологическая
модель.
Модель сущность-связь
- основной
представитель
класса объектных
моделей. Она
считается
наиболее адекватной
для архитектуры
БД и наиболее
распространенной.
В основе модели
сущность-связь
лежит представление
о реальном мире
как о совокупности
основных объектов,
называемых
сущностями
и связей между
ними.
· Под
сущностью
понимают любой
реально существующий
объект, отличный
от других объектов.
Чтобы отличить
один объект
от другого,
каждому из них
приписывается
набор атрибутов,
описывающих
данный объект.
· Связь
- это соединение
между несколькими
сущностями.
Для того, чтобы
различать
сущности и
связи, каждому
набору сущностей
приписывается
первичный
ключ.
· Первичный
ключ - это один
или несколько
атрибутов,
позволяющих
однозначно
идентифицировать
сущность в
наборе сущностей.
БД, удовлетворяющая
диаграмме
сущность-связь,
может быть
представлена
в виде набора
таблиц. Для
каждого набора
сущностей, как
и для каждого
набора отношений,
создается
отдельная
таблица, которой
присваивается
имя соответствующего
набора. В свою
очередь, каждая
таблица состоит
из столбцов,
каждый из которых
имеет свое
название.
Логические
модели, опирающиеся
на понятие
записи.
Логические
модели, опирающиеся
на понятие
записи, как и
объектные
логические
модели, описывают
данные на
концептуальном
уровне и уровне
представления,
но, в отличие
от последних,
эти модели
определяют
не только архитектуру
БД, но и дают
общее описание
ее реализации.
Однако модели
этого класса
уже не позволяют
вводить ограничения
на содержимое
БД, как это делают
объектные
логические
модели.
Самые распространенные
модели:
· реляционная
· сетевая
· иерархическая.
Реляционная
модель была
предложена
в 1970 году Е.Ф. Коддом
и на сегодняшний
день является
признанным
лидером среди
моделей своего
класса. Она
основана на
математическом
понятии отношения.
Согласно реляционной
модели, общая
структура
данных (отношение)
может быть
представлена
в виде таблицы,
в которой каждая
строка значений
(кортеж) соответствует
логической
записи, а заголовки
столбцов являются
названиями
полей (элементов)
в записях. Таким
образом, данные
и отношения
между ними в
реляционной
модели представлены
в виде набора
таблиц, аналогичным
по своей структуре
таблицам модели
сущность-связь.
Примеры реляционных
БД: dBASE IY, FoxPro, Paradox.
Наиболее уязвимой
частью реляционной
модели являются
проблемы целостности.
Для их разрешения
приняты ограничения,
соответствующие
строгой реляционной
модели. До сих
пор не удавалось
создать СУБД
полностью
реляционную
СУБД. Можно
говорить лишь
о большей или
меньшей степени
реляционности
в отношении
коммерческих
СУБД. Однако
для того чтобы
называться
реляционной
СУБД должна
обязательно
отвечать следующим
условиям:
· данные
в ней должны
храниться в
таблицах;
· указатели
и связи не должны
быть видны
пользователю;
· язык
запросов должен
быть реляционно
полным.
Сетевая модель
появилась в
конце 1960-х гг. Она
более привязана
к реализации
БД, чем реляционная
модель.
Сетевая БД
состоит из
набора записей,
соединенных
друг с другом
при помощи
ссылок (links), которые
могут быть
видны пользователю
как указатели
(pointers). Ссылка соединяет
ровно две записи.
Записи организованы
в виде произвольного
графа (arbitrary graph).
Иерархическая
модель представляет
собой разновидность
сетевой.
Иерархическая
БД, как и сетевая,
состоит из
совокупности
записей, соединенных
между собой
при помощи
ссылок. Каждая
запись состоит
из набора полей,
каждое из которых
содержит ровно
один параметр
данных.
Основное отличие
иерархической
модели от сетевой
заключается
в способе организации
записей. В
иерархической
модели записи
организованы
в виде деревьев,
а не произвольных
графов, как в
сетевой модели.
Общая логическая
структура
иерархической
БД описывается
при помощи
диаграммы
структуры
дерева (tree- structure
diagram), состоящей
из записей и
ссылок.
Пример иерархической
БД: ACCESS.
Физические
модели данных.
Физические
модели данных
используются
на уровне минимальной
абстракции.
Это самый
малочисленный
класс моделей.
Наиболее известные
из них: отождествляющая
модель (unifying model) и
модель фреймовой
памяти (frame memory).
Язык определения
данных.
План БД определяется
набором выражений
(дефиниций),
написанных
на специальном
языке, который
называется
язык определения
данных (ЯОД)
(data definition language).
Результатом
компиляции
выражений на
ЯОД является
набор таблиц,
хранящийся
в специальном
файле, который
называется
словарь данных
(data dictionary). В словаре
данных хранятся
метаданные,
то есть данные
о данных.
Разновидностью
ЯОД является
язык хранения
и определения
данных (data storage and
manipulation language), на котором
написаны выражения,
определяющие
методы доступа
к данным и способ
хранения структуры.
Язык манипуляции
данными.
Под манипуляцией
данными понимают:
· извлечение
информации,
хранящейся
в БД;
· добавление
новой информации
в БД;
·
уничтожение
хранящейся
в БД информации.
Язык манипуляции
данными (ЯМД)
обеспечивает
пользователю
доступ и манипуляцию
данными. Различают
два основных
типа ЯМД:
· процедурный,
который требует
от пользователя
указать тип
нужных ему
данных и способ
их получения,
то есть содержит
процедуры
поиска данных;
· непроцедурный,
который требует
указать только
тип данных, не
уточняя способ
их получения,
то есть не включает
процедуры
поиска.
Часть ЯМД,
отвечающая
за выборку
данных, называется
языком запросов.
Запрос (query) -
выражение,
задающее поиск
данных в СУБД.
Менеджер БД
- программный
модуль, обеспечивающий
интерфейс между
данными низкого
уровня, хранящимися
в БД, прикладными
программами
и адресованными
системе запросами.
Развернутая
структура СУБД:
СУБД состоит
из модулей,
каждый из которых
выполняет
определенную
функцию. Некоторые
функции СУБД
могут выполняться
операционной
системой. Архитектура
СУБД должна
обеспечивать
интерфейс между
СУБД и операционной
системой. СУБД
состоит из
следующих
функциональных
компонентов:
· Менеджер
файлов управляет
распределением
места на диске
и структурами
данных; обеспечивает
взаимодействие
между данными
низкого уровня,
хранящимися
в БД, прикладными
программами
и запросами,
адресованными
системе.
· Процессор
запросов
переводит
выражения на
языке запросов
в инструкции,
понятные менеджеру
БД.
· Прекомпилятор
ЯМД переводит
выражения на
ЯМД, вложенные
в прикладную
программу.
· Компилятор
ЯОД переводит
выражения на
ЯОД в набор
таблиц, содержащих
Структуры
данных
· Файлы
данных содержат
собственно
данные.
· Словарь
данных содержит
информацию
о структуре
БД.
· Индексы
служат для
быстрого поиска
данных с конкретными
значениями
(атрибутами).
4
Билет
9
1.
Формальные
модели синтаксической
структуры
предложения.
Динамические
и статистические
модели
1.
Дескриптивная
модель Задача
- описание структуры
языка
нормирование
(определение
всех правил
синтаксических
структур)
исчисление
1)
Грамматика
зависимостей
(европейская
традиция, близка
к НС, один из
авторов - Гладкий)
- указание для
каждого слова
тех слов, которые
ему непосредственно
подчинены.
Дерево
синтаксических
зависимостей
есть дерево,
множество узлов
которого служит
множеством
вхождений слов
в предложение.
Деревом называется
множество,
между элементами
которого - узлами
- установлено
бинарное отношение
- отношение
подчинения
и графически
изображают
стрелками.
идущими от
подчиняющих
узлов к подчиненным,-
такое, что:
· среди
узлов имеется
один - корень
- неподчиненный
никакому другому
узлу
· каждый
из остальных
узлов подчинен
точно одному
узлу
· нельзя,
отправившись
из к.л. узла вдоль
стрелок вернутся
в тот же узел.
ДЗ
(дерево зависимостей)
обычно используется
в описаниях
языков со свободным
порядком слов
(в частности,
русского). Стрелки
ДЗ обычно помечаются
символами
синтаксических
отношений
(предикативное,
определительное
и т.п.).
2) Метод
НС составляющие
- Для описания
синтаксической
структуры
предложения
выделяются
группы слов,
функционирующие
как отдельные
синт. единицы
- составляющие.
Система
составляющих
- это множество
отрезков предложения
которое обладает
тем свойством,
что каждые два
входящих в него
отрезка либо
не пересекаются
либо один из
них содержится
в другом.
· Одна
из НС - ядро
конструкции,
остальные -
маргинальные
элементы.
· При
графическом
изображении
система составляющих
тоже приобретает
вид дерева
(дерева непосредственных
составляющих
- ДНС).
· ДНС
используются
преим. в описаниях
языков с жестким
порядком слов.
· Составляющие
обычно помечаются
символами
грамм. категорий
(именная группа,
группа переходного
глагола и т.п.)
2.
Трансформационная
грамматика
(Харрис, 50-е гг.)
(грамматика
деревьев) служит
не для порождения
предложений,
а для преобразования
деревьев,
интерпретируемых
как деревья
подчинения
или деревья
составляющих,
например грамматика
- система правил
преобразования
деревьев,
интерпретируемых
как "чистые"
деревья подчинения
предложений
(без линейного
порядка слов).
три
уровня описания
1) правила
НС
2)
трансформационные
правила
3)
морфологические
правила
Допущения:
· синт.
система может
быть разбита
на ряд подсистем,
одна из которых
- исходная (ядерная),
остальные -
производные.
Ядерная Т - набор
предложений
(утвердительных,
простых, с глаголом
в изъяв. форме,
активного
залога, наст.
времени.)
· ядерное
предложение
описывает
элементарные
ситуации, а
класс ЯП - все
множество элем.
ситуаций.
· любой
сложный синт.
тип можно получить
при применении
упорядоченного
набора обязательных
и факультативных
трансформаций
к ядерному
предложению.
Представление
синт. структуры
предложения
- указание ядерного
типа, лежащего
в основе предложения
и трансформаций,
которые к нему
применялись,
а также их
последовательности.
Метод
явился основой
порождающей
грамматики
Хомского.
3.
Порождающая
грамматика
Хомского,
представляющая
собой упорядоченную
систему Г
=(V,W,П,R), где V и W -
непересекающиеся
конечные множества
- основное
(терминальное)
и вспомогательное
(нетерминальное),
П - элемент W,
называемый
начальным
символом и R -
конечное множество
правил вида
, где цепочки
(конечные
последовательности)
из основных
и вспомогательных
символов. Множество
тех цепочек
из основных
символов, которые
выводимы в Г
из ее начального
символа, называют
языком, порождаемым
грамматикой
Г и обозначают
L(Г). Если все
правила Г имеют
вид , где -
правый и левый
контексты, то
Г называется
грамматикой
составляющих
или грамматикой
непосредственно
составляющих
(ГНС). Чаще
всего основные
символы интерпретируются
как слова,
вспомогательные
- как символы
грамматических
категорий,
начальный
символ - как
символ категории
"предложение".
4. Реляционная
модель
5.
Аппликационная
модель (Шаумяна?)
Доминационная
грамматика,
которая порождает
множество
цепочек, интерпретируемых
обычно как
предложения
и вместе с их
синтакс. структурами
в виде ДЗ.
Грамматики
Монтегю служат
одновременно
для описания
синтакс. и семант.
структуры
предложения.
В них используется
сложный
математико-логический
аппарат (так
называемая
интенциональная
логика).
2.
Экспертные
системы и их
архитектура.
Функции основных
компонентов.
Экспертная
система - это
компьютерная
программа,
которая моделирует
рассуждение
человека-эксперта
в определенной
области, используя
для этого БЗ,
содержащую
факты и правила
об этой области
и некоторую
процедуру
логического
вывода.
Разработка
ЭС - сравнительно
новое направление
в системах ИИ;
второе название
- инженерия
знаний (термин
ввел в 1977 Фегенбаум),
сформировалась
в середине 70
гг.
Раньше
была цепочка:
аналитик -
программист
- оператор -
пользователь;
теперь пользователь
может обращаться
прямо к ЭВМ
(либо только
через инженера
по знаниям).
Структура
ЭС:
раньше: входные программ | теперь: входные интерпретатор БЗ |
Обычные
программы имеют
фиксированную
последовательность
шагов, строго
определенную
программистом,
ЭС пользуются
нахождением
удовлетворительного
решения методом
проб и ошибок.
ЭС
решают трудно
формализуемые
задачи. не имеющие
алгоритмического
решения () медицина,
геология, управление,
юридические
науки).
Попов:
три причины
появления ЭС:
· ориентированы
на решение
задач в неформализованных
областях
· предназначены
для пользователей,
не имеющих
спец. навыков
программирования
· ЭС
решают задачи
лучше, чем человек.
3
принципа разработки
ЭС:
1.
мощность ЭС
определяется
мощностью БЗ
и процедурами
ее пополнения,
т.о. компонент
приобретения
знаний важнее
компонента
логического
вывода. (Раньше
большее внимание
уделялось лог.
выводу).
2. Знание.
используемое
ЭС, является
в основном
эвристическим,
экспериментальным,
поэтому используется
коэффициент
достоверности.
3. ЭС
реализуется
в форме диалоговой
системы.
ЭС
должна обладать
способностью
приобретать
знания.
2
источника
приобретения
знаний:
1) от
эксперта
2) из
текстов (не
разработано)
ЭС
решают практические
задачи. а не
экспериментальные;
решения ЭС
могут быть
объяснены
пользователю,
т.е обладают
свойством
прозрачности,
для этого существует
специальный
компонент -
объяснительный.
Формальная
основа ЭС: базовое
понятие - правило
продукции или
формальные
процедуры
системы: правила
вида условие
-> действие если
-> то (если была
разлита горючая
жидкостью то
вызовите пожарных).
Термин
продукция ввел
Пост (1943)
Свойство
продукции -
всякая формальная
система. оперирующая
символами,
может быть
реализована
одной из продукционных
систем.
Архитектура
ЭС
| Лигвитсический |
текущее |
| |||
| ||||||
компонент | ||||||
|
· БЗ
имеет динамический
характер, содержит
факты и правила
в форме продукций
· интерпретатор
(решатель) имеет
дело с процедурами
логического
вывода, на основе
имеющихся
данных решает
задачу
· лингвистический
процессор
осуществляет
диалог с пользователем
· рабочая
память хранит
данные
· компонент
приобретения
знаний - с его
помощью знания
извлекаются
из эксперта
или текста и
заносятся в
БЗ
· объяснительный
компонент
отвечает на
вопрос, почему
принято данное
решение и чем
мотивирован
выбор.
2 режима работы
ЭС:
· приобретение
знаний: участвует
эксперт и инженер
по знаниям
(посредник)ручные
и автоматизированные
методы (brainstorm)
· режим
решения задач:
главный участник
- пользователь,
заинтересованный
в результате.
Типы ЭС:
· демонстрационные
прототипы (56)
· исследовательские
(92)
· действующие
(12)
· промышленные
(4)
· коммерческие
(9)
Примеры ЭС
две старейшие
ЭС:
DENDRAL (химическая
тематика, определяет
структуру хим.
элементов)
MAXIMA (решение
мат. задач)
Система FOBS
Санджай, Чадна
и др., "Использование
известных
ситуаций (cases) для
построения"
ЭС MEDIA (выбор
оптимального
СМИ для маркетинга
на материале
Harvard Business School) на основе
оболочки ADVISOR.
Система задает
вопросы и анализирует
все факторы,
связанные с
продуктом
(поведение
покупателя,
ориентация
на конкретного
покупателя,
конъюнктура),
рекомендует
средство рекламы,
перечисляет
возможные
альтернативы
и аргументирует
свой выбор.
4
Билет
10
1. Типы
экспериментальных
методов в лингвистике
Экспериментальные
методы в лингвистике
- это методы
, позволяющие
изучать факты
языка в условиях.
управляемых
и контролируемых
исследователем.
Философской
основой применения
экспериментальных
методов в лингвистике
является тезис
о единстве
теоретического
и эмпирического
уровней познания.
В
современной
лингвистике
термин "экспериментальный
метод" не является
четким; лингвисты
часто говорят
об эксперименте
там, где имеет
место наблюдение,
прежде всего
наблюдение
над текстами
(письменными
и устными).
Существенно.
что текст как
таковой, будучи
данностью не
может быть
объектом ЭМ;
именно поэтому
ЭМ не применимы
к изучению
истории языка,
особенностей
стиля автора
и т.п. в этих случаях
следует говорить
о наблюдении.
Объектом ЭМ
является человек
- носитель языка,
порождающий
текст, воспринимающий
тексты и выступающий
как информант
для исследователя.
в лингвистическом
эксперименте
исследователь
может иметь
в качестве
подобного
объекта самого
себя или других
носителей
языка; в первом
случае следует
говорить об
интроспекции,
во втором - об
объективном
эксперименте.
Экспериментальная
работа с информантами
(нередко в сочетании
с наблюдением)
непосредственно
в среде носителей
языка называется
обычно полевой
лингвистикой.
Историю
применения
ЭМ в лингвистике
можно разделить
на три периода:
1.
Активное освоение
ЭМ в фонетике,
акцент на сходстве
ЭМ в лингвистике
и точных науках
(труды Богородицкого,
Щербы, Матусевича)
2.
Осознание ЭМ
в лингвистике
как важнейшего
способа получения
данных о живом
языке вообще
, включая его
морфологию.
синтаксис,
семантику, а
также проблемы
языковой нормы,
языкового
общения, патологий
речевого развития
и т.д. эта научная
программа была
впервые сформулирована
Щербой ("О трояком
аспекте языковых
явлений и об
эксперименте
в языкознании")
3.
Реализация
указанной
научной программы,
и как следствие
углублении
методологических
разработок
(Апресян, Фрумкина).
В социолингвистике
и психолигвистике
ЭМ занимают
доминирующие
место.
Последовательное
применение
ЭМ в исследовании
языка и речевых
процессов
сделало необходимым
использование
статистических
методов при
планировании
эксперимента
и обработке
результатов
(лингв. статистика).
существенно.
что лигвист,
изучающий
речевое поведение
человека, имеет
дело с объектом,
равным ему
самому по сложности.
В силу этого
отношение
исследователь
- объект в лингвистике
превращается
в симметричное
отношение между
двумя исследователями:
информант может
иметь свою
теорию об
экспериментаторе
и соответственно
изменять свое
поведение в
процессе
эксперимента,
что может негативно
повлиять на
результаты
Э. Особой сферой
использования
ЭМ являются
машинные
эксперименты,
проверяющие
адекватность
формализованных
действующих
моделей языка.
Процесс
Э:
· общая
задача
· рабочая
гипотеза
· формальные
выводы, изменения
· новые
гипотезы
Цель
Э - проверка
гипотез. Человек
не должен знать
целевую установку
экспериментатора.
Типы экспериментов:
· моделирующие
эксперименты
(в социолингвистике):
порождается
ряд гипотез,
отбираются
социальные
параметры,
которые варьируются
· имитационные
эксперименты
(лабораторные)
- имитация усеченной
действительности
· натурные
эксперименты
включают условия,
позволяющие
демонстрировать
поведение,
максимально
похожее на
реакцию в аналогичной
естественной
ситуации.
Типы методов
(по количеству
информантов):
· индивидуальный
· межгрупповой
· многоуровневый,
многофакторный
(Хофман)
Экспериментальные
методы в семантике:
· ассоциативный
эксперимент
- испытуемому
дается слово-стимул
и предлагается
реагировать
на это слово
первым пришедшим
в голову словом
или словосочетанием
· метод
семантического
дифференциала
(экспер. семантика)
- один из методов
построения
субъективных
сем. пространств
( градуированные
оценочные
шкалы)
· метод
классификации
(в психолигвистике
- испытуемым
предлагается
разбить материал
на произвольное
количество
классов.)
· эксперимент
п членению
денотативного
континуума
(Фрумкина: смысловые
отношения в
группе слов
цветообозначений
+ Лабов "Структура
денотативных
значений" -
сосуды - cup, bowl, glass ->
размытость
и взаимозависимость
денотативных
границ; модели,
основанные
на компонентном
анализе, не
объясняют
вышеназваного
свойства, вывод
- более адекватна
теория прототипов,
которая только
начинает применяться
в семантике).
2. Эволюция систем
автоматизированного
перевода.
1947 г. - Memorandum by Warren Weaver об
автоматическом
переводе
1954 г. - Джорджтаунский
эксперимент
(Массачусетс)
Типы систем:
· системы
машинного
перевода (СМП)
· системы
человеко машинного
перевода (АС)
· ТБД
Три
поколения СМП
(условная
классификация,
Марчук не признавал
деления на
поколения):
I
поколение:
· содержали
полный алгоритм
морфологического
анализа
· имели
имели алгоритм
снтаксического
анализа, но
всегда одновариантный
· синтез
- блок морфологического
синтеза, болк
синтаксического
синтеза
· в
словарной
статье - только
переводной
эквивалент,
остальная
информация
- в алгоритмах
· работа
только в пакетном
режиме
II
поколение
(SYSTRAN, АМПАК, Georgetown System, ):
· мощный
блок синтаксическогоанализа
и синтеза
· многовариантный
синтаксический
анализ
· увеличение
числа и объема
словарных
статей: ПЭ +
синтаксические
модели управления
и сочетаемости
(информация
об управлении
должна находится
в словаре, а не
в алгоритме)
· недостаточное
внимание семантике
( нет сем. дефиниций,
моделей упраления
в терминах сем.
классов)
· работа
и пакетном и
в интерактивном
режимах
III
поколение
(ЭТАП-1 (350 слов),
ЭТАП-2 (4000 слов),
модель "Смысл-текст",
Апресян):
· широкое
использование
семантики на
всех уровнях:
в словаре, алгоритме
· только
исследовательские
системы, нет
ни одной промышленной
Марчук "Проблемы
МП" - 3 периода,
Слокум "Обзор
разработок
по МП":
1. 1946 - 1957
· выдвинута
концепция языка
как кода
· созданы
первые машинные
словаридля
МП
· разработана
общая концепция
МП (алгоритмы
наализа и синтеза,
рпограммное
обеспечение)
· опробованы
первые СМП
· повышенный
интерес к проблеме,
связанный с
надеждами на
возможность
скоростного
высококачественного
перевода текстов
любого типа,
щедрое финансирование
2. 1957 - 1967
· доклад
консультативного
Комитета по
автоматизированной
обработке ЕЯ
(ALPAC) при Национального
Академии Наук
США - доказана
невозможность
полностью
автоматизированного
высококачественного
перевода ->
свертывание
разработок,
сокращение
финансирования
текущих исследований
(но не долгосрочных)
· успешные
попытки промышленной
эксплуатации
СМП
· широкие
теоретические
исследования:
возникла идея
языка-посредника,
методика контекстного
анализа для
рзрешения
основных лигв.
проблем.
3. 1967 - настоящее
время
· возрождение
интереса к МП
· Люксембург,
конференция
"Преодоление
языковых барьеров"
· активная
промышленная
эксплуатация
СМП
Развитие МП
происходило
согласно гегелевской
триаде - тезис,
антитезис,
синтез.
СМП | АС | ТБД |
SYSTRAN АНРАП |
|
|
2
Билет
11
1.
Общенаучный
метод моделирования
и специфика
его применения
в лингвистике
Метод
моделирования
центральный
исследовательский
метод в науке.
Моделирование
в науке - это
выяснение
свойств какого-либо
предмета при
помощи построения
его модели.
Моделью
можно назвать
образ какого-либо
объекта, используемый
в определенных
условиях в
качестве его
заместителя
(фотография
в паспорте -
модель человека).
Свойства
моделей:
· условность
· образ
может быть не
только материальным,
но и мысленным
и передаваться
посредством
знаковой системы
· моделью
может быть не
только образ,
но и праобраз
оригинала
· модель
чаще всего
является гомоморфной
оригиналу (то
есть многим
элементам
оригинала
соответствует
меньшее количество
элементов
модели в отличие
от изоморфизма)
Модель
в лингвистике
- искусственно
создаваемое
лингвистом
реальное или
мысленное
устройство,
воспроизводящее,
имитирующее
своим поведением
(обычно в упрощенном
виде) поведение
оригинала в
лингвистических
целях.
Собственно
лингвитсические
модели:
· модели
речевой деятельности,
процессуальный
модели (самые
сложные)
· модели
языковой системы,
языковой структуры
(тоже очень
сложные)
· модель
памяти и др.
Лингвистическое
моделирование
необходимо
предполагает
использование
абстракции
и идеализации.
Отображая
релевантные
существенные
(с точки зрения
исследования)
свойства оригинала
и отвлекаясь
от несущественных,
модель выступает
как некоторый
абстрактный
идеализированный
объект. Всякая
модель строится
на основе гипотезы
о возможном
устройстве
оригинала и
представляет
собой функциональный
аналог оригинала.
что позволяет
переносить
знания с модели
на оригинал.
Критерием
адекватности
модели является
эксперимент.
В
идеале модель
должна быть
формальной
(т.е. в ней должны
быть в явном
виде и однозначно
заданы исходные
объекты, связывающие
их отношения
и правила обращения
с ними) и обладать
объяснительной
силой (т.е. не
только объяснять
факты или данные
экспериментов,
необъяснимые
с точки зрения
уже существующей
теории, но и
предсказывать
неизвестное
раньше, хотя
и принципиально
возможное
поведение
оригинала,
которое позднее
должно подтверждаться
данными наблюдения
или экспериментов).
Понятие
лингвистической
модели возникло
в структурной
лингвистике,
но вошло в научный
обиход в 60-70 гг.
20 в. с возникновением
мат. лингвистики
и проникновением
в лингвистику
мат. методов.
Содержание
термина "модель"
в современной
лингвистике
в значительной
степени охватывалось
ранее термином
"теория" (особенно
Ельмслевым).
Считается, что
наименования
модель заслуживает
лишь такая
теория. которая
достаточно
эксплицитно
изложена и в
достаточной
степени формализована
(в идеале каждая
модель должна
допускать
реализацию
на ЭВМ).
Контруирование
модели - не только
одно из средств
отображения
языковых явлений,
но и объективный
практический
критерий проверки
истинности
знаний о языке.
В единстве с
другими методами
изучения языка
моделирование
выступает как
средство углубления
познания скрытых
механизмов
речевой деятельности,
его движения
от относительно
примитивных
к более содержательным
моделям, полнее
раскрывающим
сущность языка.
Внутри
языка как системы
существует
принцип моделирования:
одни его подсистемы
моделируют
другие, например,
система письменной
речи является
моделью устной
речи; внутри
письменной
речи мы имеем
дело с несколькими
моделями (печатной,
рукописной);
план выражения
является моделью
плана содержания.
Метод
моделирования
обычно опирается
на знаковые
систем, но язык
- сам знаковая
система, т.е.
слова мы моделируем
при помощи
слов.
Главная
цель моделирования
в лингвистике
- это моделирование
целостной
языковой способности
человека.
Синтез
речи.
1 Ограничения
на синтез речи.
Cуществуют
различные
методы синтеза
речи. Выбор
того или иного
метода определяется
различными
ограничениями.
Рассмотрим
те 4 вида ограничений,
которые влияют
на выбор метода
синтеза.
Задача.
Возможности
синтезированной
речи зависят
от того, в какой
области она
будет применятся.
Когда необходимо
произносить
ограниченное
число фраз ( и
их произнесение
линейно не
меняется ),
необходимый
речевой материал
просто записывается
на пленку. С
другой стороны,
если задача
состоит в
стимулировании
познавательного
процесса при
чтении вслух,
используется
совершенно
другой ряд
методик.
Голосовой
аппарат человека.
Все
системы синтеза
речи должны
производить
на выходе какую-то
речевую волну,
но это не произвольный
сигнал. Чтобы
получить речевую
волну определенного
качества, сигнал
должен пройти
путь от источника
в речевом тракте,
который возбуждает
действие
артикуляторных
органов, которые
действуют как
изменяющиеся
во времени
фильтры. Артикуляторные
органы также
накладывают
ограничения
на скорость
изменения
сигнала. Они
также имеют
функцию сглаживания:
гладкого сцепления
отдельных
базовых фонетических
единиц в сложный
речевой поток.
Структура
языка.
Ряд
возможных
звуковых сочетаний
опредляется
природой той
или иной языковой
структуры. Было
обнаружено,
что еденицы
и структуры,
используемые
лингвистами
для описания
и объяснения
языка, могут
также использоваться
для характеристики
и построения
речевой волны.
Таким образом,
при построении
выходной речевой
волны используются
основные
фонологические
законы, правила
ударения,
морфологические
и синтаксические
структуры,
фонотактические
ограничения.
Технология.
Возможности
успешно моделировать
и создавать
устройства
для синтеза
речи в сильной
степени зависят
от состояния
технико-технологической
стороны дела.
Речевая наука
сделала большой
шаг вперед
благодаря
появлению
различных
технолоний,
в том числе:
рентгенография,
кинематография,
теория фильтров
и спектров, а
главным образом
- цифровые
компьютеры.
С приходом
интегральных
сетевых технологий
с постоянно
возрастающими
возможностями
стало возсожно
построение
мощных, компактных,
недорогих
устройств,
действующих
в реальном
времени. Этот
факт, вместе
с основательными
знаниями алгоритмов
синтеза речи,
стимулировал
дальнейшее
развитие систем
синтеза речи
и переход их
в практическую
жизнь, где они
находят широкое
применение.
2 Методы
синтеза.
Различные
подходы могут
быть сгруппированы
по областям
их применения,
по сложности
их воплощения.
Синтезаторы
делят на два
типа: с ограниченным
и неограниченным
словарем. В
устройствах
с ограниченным
словарем речь
хранится в виде
слов и предложений,
которые выводятся
в определенной
последовательности
при синтезе
речевого сообщения.
Речевые единицы,
используемые
в синтезаторах
подобного типа,
произносятся
диктором заранее,
а затем преобразуются
в цифровую
форму, что
достигается
с помощью различных
методов кодирования,
позволяющих
компрессировать
речевую информацию
и хранить ее
в памяти синтезирующего
устройства.
Существует
несколько
методов записи
и компоновки
речи.
Волновой
метод кодирования.
Самый
легкий путь
- просто записать
материал на
пленку и по
необходимости
проигрывать.
Этот способ
обеспечивает
высокое качество
синтезируемой
речи, т.к. позволяет
воспроизводить
форму естественного
речевого сигнала.
Однако этот
путь синтеза
не позволяет
реализовать
построение
новой фразы,
т.к. не предусматривает
обращение к
различным
ячейкам памяти
и вызов из памяти
нужных слов.
В зависимости
от используемой
технологии
этот способ
может представлять
задержки в
доступе и иметь
ограничения,
связанные с
возможностями
записи. Никаких
знаний об устройстве
речевого тракта
и структуре
языка не требуется.
Единственно
серьезное
ограничение
в данном случае
имеет объем
памяти. Существуют
способы кодирования
речевого сигнала
в цифровой
форме, позволяющие
в несколько
раз уплотнять
информацию:
простая модуляция
данных, импульсно-кодовая
модуляция,
адаптивная
дельтовая
модуляция,
адаптивное
предиктивное
кодирование.
Данные способы
могут уменьшить
скорость передачи
данных от 50кбит/сек
(нормальный
вариант) до
10кбит/сек, в то
время как качество
речи сохраняется.
Естественно,
сложность
операций кодирования
и декодирования
увеличивается
со снижением
числа бит в
секунду. Такие
системы хороши,
когда словарь
сообщений
небольшой и
фиксированный.
В случае же,
когда требуется
соединить
сообщения в
более длинное,
сгенерировть
высококачественную
речь трудно,
т.к. значения
параметров
речевой волны
нельзя изменить,
а они могут не
подойти в новом
контексте. Во
всех системах
синтеза речи
устанавливается
некоторый
компромисс
между качеством
речи и гибкостью
системы. Увеличение
гибкости неизбежно
ведет к усложнению
вычислений.
Параметрическое
представление.
С
целью дальнейшего
уменьшения
требуемой
памяти для
хранения и
обеспечения
необходимой
гибкости было
разработано
несколько
способов, которые
абстрагируются
от речевой
волны как таковой,
а представляют
ее в виде набора
параметров.
Эти параметры
отражают наиболее
характерную
информацию
либо во временной,
либо в частотной
области. Например,
речевая волна
может быть
сформирована
сложением
отдельн
гармоник заданной
высоты и заданными
спектральными
выступами на
данной частоте.
Альтернативный
путь состоит
в том, чтобы
форму речевого
тракта описать
в терминах
акустики и
искусственным
путем создать
набор резонансов.
Этот метод
синтеза экономичнее
волнового, т.к.
требует значительно
меньшего объема
памяти, но при
этом он требует
больше вычислений,
чтобы воспроизвести
исходный речевой
сигнал. Данный
способ дает
возможность
манипулировать
теми параметрами,
которые отвечают
за качество
речи (значение
формант, ширина
полос, частота
основного тона,
амплитуда
сигнала). Это
дает возможность
склеивать
сигналы, так
что переходы
на границах
совершенно
не заметны.
Изменения таких
параметров
как частота
основного тона
на протяжении
всего сообщения
дают возможность
существенно
изменять интонацию
и временные
характеристики
сообщения.
Наиболее популярным
в наст.вр. методами
кодирования
в устройствах,
использующих
параметрическое
представление
сигналов, является
метод, основанный
на формантных
резонансах
и метод линейного
предсказания
(LPC - linear predictive coding). Для синтеза
используются
единицы речи
различной
длины: параграфы,
предложения,
фразы, слова,
слоги, полуслоги,
дифоны. Чем
меньше единица
синтеза, тем
меньшее их
количество
требуется для
синтеза. При
этом, требуется
больше вычислений,
и возникают
трудности
коартикуляции
на стыках.
Преимущества
этого метода:
гибкость, немного
памяти для
хранения исходного
материала,
сохранение
индивидуальных
характеристик
диктора. Требуется
соответствующая
цифровая техника
и знание моделей
речеобразования,
при этом, лингвистическая
структура языка
не используется.
Синтез
по правилам.
Описанные
выше методы
синтеза ориентированы
на такие речевые
единицы, как
слова, предварительно
введенные в
устройство
с голоса диктора.
Данный принцип
лежит в основе
функционирования
синтезаторов
с ограниченным
словарем. В
синтезаторах
с неограниченным
словарем элементами
речи являются
фонемы или
слоги , поэтому
в них применяется
метод синтеза
по правилам,
а не простая
компоновка.
Данный метод
весьма перспективен,
т.к. обеспечивает
работу с любым
необходимым
словарем, однако
качество речи
значительно
ниже, чем при
использовании
метода компоновки.
При
синтезе речи
по правилам
также используются
волновой и
параметрический
методы кодирования,
но уже на уровне
слогов.
Метод
параметрического
представления
требует компромисса
между качеством
речи и возможностью
изменять параметры.
Исследователи
обнаружили,
что для синтеза
речи высокого
качества необходимо
иметь несколько
различных
произношений
единицы синтеза
(например, слога),
что ведет к
увеличению
словаря исходных
единиц без
каких бы то ни
было сведений
о контекстной
ситуации,
оправдывающей
тот или иной
выбор. По этой
причине процесс
синтеза получает
еще более абстрактный
характер и
переходит от
параметрического
представления
к разработке
набора правил,
по которым
вычисляются
необходимые
параметры на
основе вводного
фонетического
описания.Это
вводное представление
содержит само
по себе мало
информации.
Это обычно
имена фонетических
сегментов (
напр, гласные
и согласные)
со знаками
ударения,
обозначениями
тона и временных
характеристик.
Таким образом,
метод синтеза
по правилам
использует
малоинформационное
описание на
входе ( менее
100 бит/сек). Этот
метод дает
полную свободу
моделирования
параметров,
но необходимо
подчеркнуть,
что правила
моделирования
несовеншенны.
Синтезированная
речь хуже
натуральной,
тем не менее,
она удовлетворяет
тестам по
разборчивости
и понятности.
На уровне предложения
и параграфа
правила предоставляют
необходимую
степень свободы
для создания
плавного речевого
потока.
3 Конвертация
текста в речь.
Синтез
по правилам
требует детального
фонетического
транскрибирования
на входе. Хотя
для запоминания
этой информации
требуется мало
памяти, чтобы
извлечь из нее
необходимые
параметры,
необходимы
знания эксперта.
Для конвертации
неограниченного
английского
текста в речь
необходимо
сначала проанализировать
его с целью
получения
транскрипции,
которая затем
синтезируется
в выходную
речевую волну.
Анализ текста
по своей природе
задача лингвистическая
и включает в
себя определение
базовых фонетических,
слоговых, морфемных
и синтакисическмих
форм, плюс -
вычленение
семантической
и прагматической
информации.
Системы конвертации
текста в речь
являются наиболее
комплексными
системами
синтеза речи,
включающие
в себя знания
об устройстве
речевого аппарата
человека,
лингвистической
структуре
языка, а также
которые должны
учитывать
ограничения,
накладываемые
областью применения
системы,
технико-технологической
базой. Необходимо
заметить, что
и текст и речь
являются
поверхностными
представлениями
базовых лингвистических
форм, поэтому
задача преобразования
текста в речь
состоит в выявлении
этих базовых
форм, а затем
в воплощении
их в речи.
4 Система
преобразования
текста в речь
MITalk.
На
примере этой
системы проиллюстрируем
сильные и слабые
стороны коммерческих
версий. Разработка
системы началась
в конце 60-х гг.
Изначально
предполагалось
разработать
читающую машину
для слепых, но
система MITalk может
применяться
в любых ситуациях,
где необходимо
преобразовать
текст в речь.
Система имеет
блок морфологического
анализа, правила
преобразования
буква-звук,
правила лексического
ударения,
просодический
и фонематический
синтез.
5 Анализ
текста
Преобразование
символов в
стандартную
форму.
В
самых различных
текстах можно
обнаружить
символы и
аббревиатуры,
которые не
принадлежат
к категории
" правильно
образованных
слов". Такие
символы как
"%" и "&", аббревиатуры
типа "Mr" и "Nov"
должны быть
преобразованы
в нормальную
форму. Были
разработаны
подробные
руководства
по транскрибированию
чисел, дат, сум
денег. Иногда
возникают
двусмысленные
ситуации, такие
как, например,
использование
знака дефиса
в конце строки.
Человек в таких
случаях, чтобы
определить
подходящее
произношение,
обращается
к контексту
и к практическим
знаниям, которые
не поддаются
алгоритмизации.
Морфологический
анализ
В
вводном тексте
границы слов
легко определяются.
Можно хранить
произношение
всех английских
слов. Размер
словаря будет
большим, но в
таком подходе
есть несколько
привлекательных
сторон. Во-первых,
в любом случае
необходим
словарь слов,
произношение
которых является
исключением
из общих правил.
Такими являются,
например,
заимствованные
слова ( parfait, tortilla). Более
того, все механизмы
преобразования
цепочки букв
в фонетические
значки допускают
ошибки. Интересный
класс исключений
составляют
часто употребительные
слова. Например,
звук /th/ в начале
слова произносится
как глухой
фрикативный
в большинстве
слов (thin, thesis, thimble). Но
в наиболее
частотных,
таких как короткие
функциональные
слова the, this, there, these, those,
etc. начальный
звук произносится
как звонкий.
Также /f/ всегда
произносится
глухо, за исключением
слова "of". Другой
пример. В словах
типа "shave", "behave"
конечный /e/ удлиняет
предшествующий
гласный, но в
таком частом
слове как "have"
это правило
не действует.
Наконец, конечный
/s/ в "atlas", "canvas" глухой,
но в функциональных
словах is, was, has он
произносится
звонко. Таким
образом, приходим
к выводу, что
все системы
должны иметь
такой словарь
исключений.
Что касается
нормальных
слов, то здесь
имеется два
варианта. Первый
крайний случай
состоит в том,
чтобы составить
полный словарь.
Хотя число слов
ограничено,
составить
абсолютно
полный словарь
невозможно,
т.к. постоянно
появляются
новые слова.
Кроме того, в
словарь необходимо
будет внести
все изменяемые
формы слова.
Другой крайний
подход состоит
в установлении
ряда правил,
которые бы
преобразовывали
цепочки букв
в фонетические
значки. Хотя
эти правила
очень продуктивны,
нельзя избежать
ошибок, что
ведет к созданию
словаря исключений.
Чтобы правильно
определить
фонетическую
транскрипцию
слова, нужно
правильно
разбить слово
на структурные
составляющие.
Было обнаружено,
что важную роль
в определении
произношения
играет морфема,
минимальная
синтаксическая
единица языка.
Система MITalk использует
морфемный
лексикон, что
может рассматриваться
как некоторый
компромиссный
подход между
двумя крайними,
упомянутыми
выше. Многие
английские
слова можно
расчленить
на последовательность
морфов, таких
как префиксы,
корни, суффиксы.
Так слово "snowplows"
имеет два корня
и окончание,
"relearn" имеет приставку
и корень. Такие
морфы являются
атомными
составляющими
слова и они
относительно
стабильны в
языке, новые
морфы формируются
в языке очень
редко. Эффективный
лексикон может
иметь не более
10,000 морфов. Морфемный
словарь действует
вместе с процедурами
анализа. Этот
подход эффективен
и экономичен,
т.к. хранение
морфемного
словаря не
занимает много
места, а хранить
все изменяемые
формы слова
не нужно. Так
как морфы являются
основными
составляющими
слова, проиллюстрируем
их полезность
при определении
произношения.
При соединении
морфов они
часто меняют
свое произношение.
Например, при
образовании
множественного
числа существительных
"dog" и "cat" конечный
/s/ будет звонким
в первом случае
и глухим во
втором. Это
пример морфофонемного
правила, касающегося
реализации
морфемы множественного
числа в различных
окружениях.
Становится
очевидным, что
для эффективного
и легкого определения
произношения
нужно распознать
составляющие
морфемы слова
и обозначить
их границы. Еще
один плюс морфемного
анализа - обеспечение
подходящей
базы для использования
правил преобразования
буква-звук.
Большинство
таких правил
рассматривают
слово как
неструктурированную
последовательность
букв, используя
окно сканирования
для нахождения
согласных и
гласных кластеров,
которые преобразуются
в фонетические
значки. Буквы
"t" и "h" в большинстве
случаев выступают
как единый
согласный
кластер, но в
слове "hothouse" кластер
/th/ разрывается
границей двух
разных морфем.
Гласный кластер
/ea/ представляет
много трудностей
для алгоритмов
буква-звук, но
в слове changeable он
явно разрывается.
В системе MITalk
морфемный
анализ всегда
проводится
перед правилами
преобразования
букв в звуки.
Лежащие в основе
слова морфы
не всегда очевидны.
Например, некоторые
морфы множественного
числа не всегда
легко определить:
mice, fish. Подобные
формы заносятся
в словарь. При
помощи морфемного
лексикона и
соответствующего
алгоритма
анализа 95-98% слов
анализируется
удовлетворительно.
В результате
им приписывается
фонетическая
транскрипция
и часть речи.
Правила
"буква-звук"
и лексическое
ударение
В
системе MITalk
нормализованный
вводный текст
подвергается
морфологическому
анализу. Может
быть, что целое
слово есть в
словаре морфов,
как, например,
слово "snow". С другой
стороны, слово
может быть
проанализировано
как последовательность
соединенных
морфов. В английском
языке среднее
число морфов
в слове, примерно
два. В случае,
если ни целое
слово не может
быть найдено
в словаре морфов,
ни проанализировано
как последовательность
морфов, в этом
случае применяются
правила преобразования
"буква-звук".
Важно подчеркнуть,
что этот метод
никогда не
применяется,
если морфемный
анализ удался.
Конвертация
последовательности
букв в последовательность
звуков при
помощи этих
правил проходит
в три этапа.
Первый этап
- отделение
префиксов и
суффиксов.
Возможность
отделения
аффиксов не
такая сильная,
как в морфемном
анализе, но
действует
удовлетворительно.
Предполагается,
что после отделения
префиксов и
суффиксов
остается одна
центральная
часть слова,
которая состоит
из одного морфа,
подвергаемого
затем правилам
преобразования.
Второй
этап состоит
в преобразовании
согласных в
фонетические
значки, начиная
с наиболее
длинного согласного
кластера до
тех пор, пока
все отдельные
согласные не
будут преобразованы.
Последний этап
- оставшиеся
гласные преобразуются
при помощи
контекстов.
Гласные преобразуются
последними,
потому что это
наиболее трудная
задача, зависящая
от контекста.
Например, гласный
кластер /ea/ имеет
14 разных произносительных
контекстов
и несколько
произношений
(reach, tear, steak, leather).
В
системе MITalk правила
преобразования
букв в звуки
действуют в
паре с широким
набором правил
расстановки
лексического
ударения. Еще
25 лет назад
лингвистам
не удавалось
обнаружить
никакой системы
расстановки
ударений в
английских
словах. В Настоящее
время разработан
ряд правил,
эффективно
справляющихся
с этой задачей.
Ударения зависят
от синтаксической
роли слова,
например,
прилагательное
"invalid" отличается
от существительного.
Таких слов
немного, но
учитывать их
необходимо.
Кроме того, на
некоторые
суффиксы
автоматически
падают ударения
в словах, как,
например, в
"engineer". Но бывают
более сложные
случаи, которые
разрешаются
применением
циклических
правил.
В
системе MITalk разработаны
несколько
наборов таких
правил, некоторые
из которых
включают в себя
до 600 правил.
Конечно, большинство
из них употребляются
довольно редко.
Подразумеваются,
что все сильные
и неправильные
формы преобразуются
на стадии
морфологического
анализа. Правила
же "буква-звук"
используются
для преобразования
новых и неправильно
написанных
слов. Например,
слово "recieved" получает
правильную
транскрипцию,
благодаря этим
правилам
преобразования.
Парсинг.
Каждая
схема преобразования
неограниченного
текста в речь
должна включать
синтаксический
анализ. Необходимо
определить
синтаксическую
роль слова,
т.к. она часто
влияет на
произношение
и ударение.
Кроме того
синтаксический
анализ важен
для определения
правильного
тонального
контура и временных
характеристик.
Просодические
характеристики
важны для синтеза
речи, чтобы она
звучала живо
и естественно.
К сожалению,
полный синтаксический
анализ на уровне
сложного предложения
(clause-level parsing) осуществить
нельзя. Тем не
менее, возможно
провести
синтаксический
анализ на уровне
фразы (phrase-level parsing), в
результате
которого определяется
большая часть
необходимой
для синтеза
речи структуры,
хотя в некоторых
ситуациях
неизбежны
ошибки из-за
отсутсвия
анализа целого
предложения.
Встречается
множество
синтаксически
двусмысленных
предложений,
таких как "he
saw the man in the park with a telescope", для
которых фразовый
анализ достаточен.
В
английском
языке существует
ряд синтагматических
маркеров, по
которым можно
формально
разграничить
фразы: это
вспомогательные
глаголы, детерминативы
в номинативных
фразах. Система
MITalk широко использует
это и проводит
высокоточный
грамматический
анализ
(augmented-transition-network grammas). Фразовый
анализ показал
удовлетворительные
результаты,
хотя эффективный
анализатор
предложений
несомненно
улучшил бы
работу системы.
Пока анализаторы
предложений
сталкиваются
со значительными
трудностями,
когда встречают
неполное или
синтаксически
омонимичное
предложение.
По завершении
деятельности
блока синтаксического
анализа система
приписывает
словам маркеры
функциональных
частей речи,
отмечает
синтаксические
паузы как основу
для дальнейшего
уточнения
произношения,
временных
харатеристик,
частоты основного
тона.
Модификация
ударения и
фонологические
уточнения.
Последняя
фаза анализа
состоит в некоторых
незначительных
поправках к
имеющейся уже
фонетической
транскрипции
на основе анализа
контекстного
окружения.
Простой пример
определения
произношения
артикля "the",
которое зависит
от начального
звука последующего
слова. Кроме
того, на этом
этапе используются
некоторые
эвристические
методы проверки
правильного
соотношения
общего контура
предложения
с контурами
отдельных слов.
На этом этапе
заканчивается
подготовка
исходного
текста собственно
к самому процессу
синтеза.
6 Синтез.
Важно
осознать, что
в системе MITalk не
используются
готовые речевые
волны даже в
параметрическом
представлении.
Система не
хранит параметрические
представления
множества
морфов или
слов. Вместо
этого были
разработаны
правила контроля
параметров,
так что можно
реализовать
любую желаемую
речевую волну
на выходе.
Просодическая
рамка.
Первый
шаг в создании
выходной речевой
волны - создание
временного
контура и частоты
основного тона
( основные корреляты
интонации ), на
основе которых
строится детальная
артикуляция
отдельных
фонетических
элементов.
Распределение
ударения, которое
было вычислено
на стадии анализа,
во многом
ответственно
за контур временного
распределения
и тональный
контур. Часто
интенсивность
принимают за
коррелят ударения,
тогда как главными
ключами являются
длительность
и изменения
в тональном
контуре. Согласные
мало меняются
по длительности,
в то время как
гласные более
пластичны и
могут легко
сжиматься или
растягиваться.
Существует
также тенденция
растягивать
слова на границе
основных абзацев
предложения,
и наоборот,
сжимать интервалы
на относительно
невыделенных
участках. Кроме
того, на основе
временной рамки
задается частота
основного тона
(или тональный
контур). В утвердительных
предложениях
обычно высота
тона резко
поднимается
на первом ударном
слоге, затем
плавно снижается
до последнего
ударного слога,
где она резко
падает. Вопросительные
и повелительные
предложения
имеют различные
тональные
контуры. Кроме
целостного
контура предложения
существуют
еще локальные
ударения. Большее
ударение получают
слова, выражающие
отрицание или
сомнение ( например,
слово might ), значение
частоты основного
тона на них
возрастает;
новая информация
в предложении
также больше
выделяется
ударением. С
другой стороны,
высота тона
используется
в семантических
и эмоциональных
целях, что не
может быть
выведено из
письменного
текста. Необходимо
лишний раз
подчеркнуть
важность составления
правильного
просодического
контура, т.к.
неправильный
просодический
контур может
привести к
трудностям
в восприятии.
Синтез
фонетических
сегментов.
Когда
завершено
создание
просодической
рамки, создаются
параметры,
соответствующие
модели речевого
тракта. Обычно
таких параметров
25, которые изменяются
с интервалом
5 - 10 мсек. В настоящее
время используются
около 100 контекстных
правил описания
траектории
изменения
параметров.
Когда значения
параметров
вычислены, они
должны быть
перенесены
на соответствующую
модель речевого
тракта (обычно
это формантная
модель или
LPC-модель). Выходная
дискретная
модель создается
обычно на частоте
10 Кгц.
7 Оценка
синтетической
речи.
С
точки зрения
понятности,
разборчивости
качество
синтезированной
речи достаточно
хорошее. Был
проведен тест,
где одна группа
испытуемых
прослушивала
синтезированную
речь с письменным
вариантом перед
глазами, а другая
- без. Выяснилось,
что результаты
прослушивания
мало отличаются
друг от друга.
Тем не менее,
синтезированной
речи не хватает
живости и
естественности,
поэтому воспринимать
ее на протяжении
длительного
времени трудно.
Исследования
показали, что
фрикативные
и назальные
звуки требуют
дальнейшего
улучшения
качества.
2
Билет
12
1. Типы
лингвистических
моделей; основные
требования
к ним и критерии
их оценки.
Модель
в лингвистике
- искусственно
создаваемое
лингвистом
реальное или
мысленное
устройство,
воспроизводящее,
имитирующее
своим поведением
(обычно в упрощенном
виде) поведение
оригинала в
лингвистических
целях.
Типы
лингвистических
моделей:
1. по охвату
структуры
языка:
· общие
(глобальные)
стремятся
охватить весь
язык: (vocabulary, grammar)
· частные:
фонетическая
модель русского
языка, модель
системы гласных
2. по типологическому
статусу:
· универсальные
стремятся
охватить все
языки мира:
· специфические
характерны
для определенного
языка или группы
языков: мягкость
- твердость
согласных рус.
языка (не действует
в англ., франц.)
3. по гносеологическому
статусу:
· модели
языка
· модели
лингвистических
знаний различные
фонетические
школы
· модели
деятельности
лингвиста
4. по отраженному
аспекту языка
и речевой
деятельности:
Модели
различаются
не только по
направленности
на определенный
объект, но и по
используемым
средствам
моделирования
(алгоритму или
исчислению)
Алгоритм -
строгая
последовательность
предписывающих
правил
Исчисление
- множество
разрешающих
правил (порядок
выполнения
не важен)
· анализирующие
модели моделируют
процесс понимания,
используют
логическое
средство алгоритм
· синтезирующие
модели моделируют
процесс вербализации,
смысла речевого
отрезка
· порождающие
модели автор
Хомский объект
моделирования
- множество
правильных
речевых отрезков
составляются
правила различения
приемлемого
и неприемлемого;
логический
средство - исчисление
; не служат
выражением
смысла; на выходе
- цепочки элементов
(грамм. правильных
предложений)
· собственно
структурные
модели основа
всех остальных
объект моделирования
- структура
языка как таковая;
логический
аппарат - логика
отношений и
классов. Пример:
грамматический
словарь Железняка
5. по конечной
цели исследования
· теоретические
· описательные
· прикладные
6. по используемым
методам
· математические
модели
· психологические
модели
· социологические
модели
7. по функциональному
статусу
· абстрактно
обобщающие
модели
· действующие
8. по используемым
материальным
средствам
· графические
· символьные
· компьютерные
Частная
модель обычно
входит в набор
частных моделей,
описывающий
определенный
уровень языка:
1. фонологический
уровень
2. морфологический
уровень
3. синтаксический
4. лексико-семантический
Основные
теоретические
требования
к модели:
1.
полнота модели
- способность
отражать все
факты, на которые
она рассчитана,
на охват которых
она претендует
2.
простота -
удобство,
использования
как можно меньшего
числа средств
(символов, правил)
для достижения
поставленной
научной цели
3.
объяснительная
сила - способность
модели вскрывать
причины наблюдаемых
фактов и предсказывать
новые факты
(например. модели
исторического
изменения
слова; системы
машинного
перевода в
очень малой
степени объяснительные)
4.
адекватность
- свойство
максимальной
похожести на
моделируемый
объект, на оригинал,
можно свести
к объяснительной
силе или
теоретико-множественному
соответствию
5.
экономность
- экономичное
использование
энергетических
и временных
ресурсов при
применении
модели
6.
точность -
возможность
выполнения
операций
представляемым
моделью формальным
аппаратом
7.
эстетические
свойства -
красота модели
Прикладные
критерий: главное
- удобство модели.
Для моделирования
языка очень
важны логические
средства реализации
модели (компьютерное
воплощение
модели).
Синтаксический
анализ.
При использовании
синтаксического
анализа происходит
интерпретация
отдельных
частей высказывания,
а не всего
высказывания
в целом. Обычно
сначала производится
полный синтаксический
анализ, а затем
строится внутренне
представление
введенного
текста, либо
производится
интерпретация.
Деревья
анализа и
свободно-контекстные
грамматики.
Большинство
способов
синтаксического
анализа реализовано
в виде деревьев.
Одна из простейших
разновидностей
- свободно-контекстная
грамматика,
состоящая из
правил типа
S=NP+VP
или VP=V+NP
и полагающая,
что левая часть
правила может
быть заменена
на правую без
учета контекста.
Свободно-контекстная
грамматика
широко используется
в машинных
языках, и с ее
помощью созданы
высокоэффективные
методы анализа.
Недостаток
этого метода
- отсутствие
запрета на
грамматически
неправильные
фразы, где, например,
подлежащее
не согласовано
со сказуемым
в числе. Для
решения этой
проблемы необходимо
наличие двух
отдельных,
параллельно
работающих
грамматик:
одной - для
единственного,
другой - для
множественного
числа. Кроме
того, необходима
своя грамматика
для пассивных
предложений
и т.д. Семантически
неправильное
предложение
может породить
огромное количество
вариантов
разбора, из
которых один
будет превращен
в семантическую
запись. Всё это
делает количество
правил огромным
и, в свою очередь,
свободно-контекстные
грамматики
непригодными
для NLP.
Трансформационная
грамматика.
Трансформационная
грамматика
была создана
с учетом упомянутых
выше недостатков
и более рационального
использования
правил ЕЯ, но
оказалась
непригодной
для NLP.
Трансформационная
грамматика
создавалась
Хомским как
порождающая,
что, следовательно,
делало очень
затруднительным
обратное действие,
т.е. анализ.
Расширенная
сеть переходов.
Расширенная
сеть переходов
была разработана
Бобровым (Bobrow),
Фрейзером
(Fraser)
и во многом
Вудсом (Woods)
как продолжение
идей синтаксического
анализа и
свободно-контекстных
грамматик в
частности. Она
представляет
собой узлы и
направленные
стрелки, “расширенные”
(т.е. дополненные)
рядом тестов
(правил), на
основании
которых выбирается
путь для дальнейшего
анализа. Промежуточные
результаты
записываются
в ячейки (регистры).
Ниже приводится
пример такой
сети, позволяющей
анализировать
простые предложения
всех типов
(включая пассив),
состоящие из
подлежащего,
сказуемого
и прямого дополнения,
таких, как
The
rabbit nibbles the carrot
(Кролик грызет
морковь).
Обозначения
у стрелок означают
номер теста,
а также либо
признаки, аналогичные
применяемым
в свободно-контекстных
грамматиках
(NP),
либо конкретные
слова (by).
Тесты написаны
на языке LISP
и представляют
собой правила
типа если
условие=истина,
то присвоить
анализируемому
слову признак
Х
и записать его
в соответствующую
ячейку.
Разберем
алгоритм работы
сети на вышеприведенном
примере. Анализ
начинается
слева, т. е. с
первого слова
в предложении.
Словосочетание
the
rabbit
проходит тест,
который выясняет,
что оно не является
вспомогательным
глаголом (Aux,
стрелка 1), но
является именной
группой (NP,
стрелка 2). Поэтому
the
rabbit
кладется в
ячейку Subj,
и предложение
получает признак
TypeDeclarative,
т.е. повествовательное,
и система переходит
ко второму
узлу. Здесь
дополнительный
тест не требуется,
поскольку он
отсутствует
в списке тестов,
записанных
на LISP.
Следовательно,
слово, стоящее
после the
rabbit
- т. е. nibbles
- глагол-сказуемое
(обозначение
V
на стрелке), и
nibbles
записывается
в ячейку с именем
V.
Перечеркнутый
узел означает,
что в нем анализ
предложения
может в принципе
закончиться.
Но в нашем примере
имеется еще
и дополнение
the
carrot,
так что анализ
продолжается
по стрелке 6
(выбор между
стрелками 5 и
6 осуществляется
снова с помощью
специального
теста), и словосочетание
the
carrot
кладется в
ячейку с именем
Obj.
На этом анализ
заканчивается
(последний узел
был бы использован
в случае анализа
такого пассивного
предложения,
как The
carrot was nibbled by the rabbit).
Таким образом,
в результате
заполнены
регистры (ячейки)
Subj,
Type,
V
и Obj,
используя
которые, можно
получить какое-либо
представление
(например, дерево).
Расширенная
сеть переходов
имеет свои
недостатки:
немодульность;
сложность
при модификации,
вызывающая
непредвиденные
побочные эффекты;
хрупкость
(когда единственная
неграмматичность
в предложении
делает невозможным
дальнейший
правильный
анализ);
неэффективность
при переборе
с возвратами,
т.к. ошибки на
промежуточных
стадиях анализа
не сохраняются;
неэффективность
с точки зрения
смысла, когда
с помощью
полученного
синтаксического
представления
оказывается
невозможным
создать правильное
семантическое
представление.
3
Билет
13
1.
Метаязыки
формального
описания
семантических
структур.
Семантические
метаязыки
различаются:
по
объекту, который
они описывают
(морфема, лексема,
словосочетание,
предложение,
текст в целом).
по
аспекту языковой
структуры,
который они
отражают:
(парадигматический
аспект
синтагматический
аспект)
Сходимость
МЯ - возможность
переводить
с одного МЯ на
другой.
По
описываемому
объекту:
1.
значение морфем
МЯ
· МЯ
компонентного
анализа (Найда,
Апресян, Катс)
· МЯ
пресуппазиционного
анализа
(прототипический
анализ): если
высказывание
подвергнуть
отрицанию, то
отрицается
только имплицитно
выраженная
часть, то, что
не отрицается
- ассерция
2. значение лексем
исследуется
в синтагматичсеком
аспекте - сочетаемость
лексем:
· теория
семантической
валентности,
понятие модели
управления
(Апресян)
в парадигматическом
аспекте:
· глубинные
падежи (агенс,
интсрументалис
...), падежная
рамка Филлмора
3.
значение
словосочетаний
исследуется
в
парадигматическом
аспекте при
помощи тех же
МЯ описания,
что и лексемы,
в
синтагматическом
плане:
· язык
лексических
параметров
и функций
(Апресян), понятие
лекс. параметра
связано с понятием
устойчивой
сочетаемости
слов в словосочетании
4. значение
предложения
в
парадигматическом
аспекте:
· семантическая
сеть (Скрэгг:
"Семантическая
сеть как модель
памяти")
· язык
исчисления
предикатов
(Дж. Лакофф
"Постулаты
речевого общения",
импликация,
пресуппозиция,
пропозиция,
условия искренности.
условия мотивированности)
5.
значение текста
в целом
в
парадигматическом
аспекте используются
такие макроструктуры,
как сценарии.
фреймы, планы,
сцены,
фрейм
- базовая структура
представления
знаний
сценарий
динамический
- набор фреймов,
развертывающийся
во времени.
· семантическая
сеть ()
Чейф: - теория
организации
памяти
три вида памяти:
поверхностная
(surface)
кратковременная
(shallow)
долговременная
(deep)
иерархия событий
-> иерархия
событий различной
личностной
значимости
личностная
зависимость
понятие текущего
сознания
(consciousness)
· язык
концептуальных
зависимостей
(Шенк)
· язык
шаблонов
(templates, Уилкс:)
6.
процессы
· понимания
(Шенк)
· вербализации
(Маккьюин)
Роджер Шенк:
знания не могут
быть истолкованы
в лингвистических
терминах -> язык
концептуальных
зависимостей:
P-Trans (физическое
перемещение),
M-Trans (интеллектуальное
перемещение).
Шенком была
постулирована
независимость
языкового
представления
от ЕЯ, тем не
менее язык КЗ
оказался привязан
к поверхностному
синтаксису
английского
языка. Каждое
высказывание
запускает
цепочку концептуальных
выводов (inferences),
позволяющих
правильно
понимать ситуацию
(Мила была голодна,
она взяла
путеводитель
Митчелина).
Модель SAM (Script
Applying Mechanism) является
компьютерной
программой,
которая позволяет
понимать связность
текста за счет
применения
сценариев:
· POLITICS
(ведет диалог,
моделирует
политическую
идеологию)
· PAM ->
TALE-SPIN - порождение
сказок
· FRUMP
- машинное
реферирование
сообщений на
нескольких
языках, чтение
, опирающееся
на понятие
интереса (Integral
Partial Parser)
Категории,
встречающиеся
у Шенка:
· интерес
· объяснение
· память
(организация
концептуальной
памяти)
· ожидание
· понимание
движимого
ошибками
Уилкс, "Анализ
предложений
английского
языка": вводит
единую форму
представления
- шаблон (template), интуитивным
соответствием
которого можно
считать базисную
форму представления
"агенс - действие
- объект. Шаблоны
строятся из
более мелких
блоков - формул,
соответствующих
толкованиям
отдельных
лексем. Для
того, чтобы
построить
полное сем.
представление
текста (сем.
блок), шаблоны
объединяются
с помощью структур
более высокого
уровня - надшаблонов
(paraplates) и правил
вывода умозаключений;
· каждая
из готовых
структур построена
на базе 80 атомарных
сем. элементов,
а также функций
и предикатов,
задаваемых
на этом множестве.
· система
на LISPe, переводит
тексты с англ.
на фр.
· для
разрешения
неоднозначности
используется
цепь умозаключений
· нет
синтаксического
анализа в обычном
понимании,
сразу переходит
к сем. представлениям;
не содержит
в явном виде
никакой синт.
информации,
только формула
(Ф), которая имеет
вид ДЗ; главным
считается самый
правый элемент
Ф, который задает
фундаментальную
категорию для
всей Ф.
· содержит
глубинные
падежные элементы
· большая
гибкость при
описании смысла,
чем у метода
Фодора и Катса,
в которых нет
глубинных
падежных элементов
· шаблоны
имеют вид сети,
состоящей из
Ф
· шаблон
состоит из 3
узлов: агенс,
действие. объект.
2.
Гипертекстовые
системы
Гипертекст
- это текст.
смысловые
элементы которого
могут читаться
в разной
последовательности.
Последовательность
чтения - произвольная.
Между текстовыми
фрагментами
указаны разрешенные
переходы. Как
правило, от
одного фрагмента
можно перейти
к нескольким
другим. Читать
можно с любого
элемента в
разных направлениях.
Компьютеры
позволяют
мгновенно
переходить
от одного фрагмента
текста к другому,
что позволяет
читать нелинейные
так же легко,
как линейные.
Гипертекст
- компьютаризованный
нелинейный
текст. Нельсон
и Энгельбарт
впервые реализовали
ГТ в конце 60 гг.
Особенности
ГТ по сравнению
с традиционными
нелинейными
текстами (текст
с комментариями,
ссылками,
энциклопедия):
1.
явная выраженность
сетевой структуры:
узлы (текстовые
фрагменты) и
связи (возможность
перехода от
одного ТФ к
другому -> навигация).
Связь может
быть однонаправленной
от фрагмента
к комментарию
или двунаправленной
между двумя
фрагментами.
Связь может
носить иерархический
характер - от
общего к целому.
Пользовательский
интерфейс:
· переход
- не более двух
клавиш
· пользователь
должен иметь
средства
ориентации:
При каждом узле
дается оглавление
- локальная
ориентация.
Глобальная
ориентация
- наглядное
изображение
структуры
гипертекстов
ой сети, в которой
помечается
путь, пройденный
пользователем
· многооконная
система позволяет
видеть одновременно
несколько ФТ
на экране.
2.
открытость
гипертекста
(для включения
новых ФТ, читатель
может выступать
соавтором)
Пример
ГТ: изобразительная
и звуковая
система Гипермедиа
(комплексное
использование
информации
разной природы,
синтез разных
искусств)
Динамический
ГТ постоянно
дополняется
новыми текстовыми
фрагментами
(необходимо
находить связи
для поступающих
извне ФТ)
ГТ
- сама форма
организации
материала и
технология,
без которой
невозможна
его организация.
Гт - накопление
информации
в БД, доступ к
данным - через
запросы. связь
важна для
пользователя,
поэтому в БД
ГТ системы нет
заранее установленных
связей. Выдача
информации
- воспроизведение
фрагментов
сетей, сформированных
к этому моменту
в БД. выдаются
отд. узлы и участки
сети в графической
форме вместе
с маршрутами
движения. В ГТ
сети можно
легко отражать
идеи участников
проекта, для
дальнейшего
изучения их
в интерактивном
режиме сразу
несколькими
участниками.
4 вида
ГТС (обзор Конилина):
1.
библиотечные
макросистемы
(шире, чем поиск
литературы)
XANADU, Нельсон
система хранения
и актуализации
информации),
TEXTNET (принцип
динамического
упорядочения,
перечень узлов)
2.
средства
исследования
проблем: IBIS,
Риштель (аспекты,
позиции, аргументы);
; JOG (изучение
справочной
энциклопедической
литературы,
выведение
страниц)
3. системы
для просмотра
БД (подобны
библиотечным.
но меньше, служат
для получения
справочных
данных) Browsing Systems,
WE среда нужна
для описания
системы просмотра,
легкость доступа,
добавление
новой информации
не разрешено
4. системы
широкого назначения
(экспериментирование
в разл. направлениях):
INTERMEDIA фирмы XEROX
3
Билет
14
1.
Автоматизация
анализа письменного
текста: основные
подходы к решению
проблемы.
Существует
2 основные стратегии
решения проблемы:
1. модульный
подход - последовательный
анализ по уровням
(морфологический,
синтаксический,
семантический,
прагматический)
2. интегральный
подход (более
современный
и более адекватный,
Р. Шенк)
1.
Системы модульного
типа (Леонтьева):
модуль морфологического анализа | -> полное |
модуль синтаксического анализа | -> полное |
модуль семантического анализа | -> частичное |
(пока |
Для
широких ПО
может быть
использован
в нескольких
системах:
· СМП
(SYSTRAN)
· системах
извлечения
знаний
· ИПС
2.
Системы интегрального
типа
Концептуальный | -> | фрагментарные концептуальные представления: | ||
морф.анализ | синт.анализ | сем. | сценарии, фреймы. планы. |
· Ищет
в тексте диагностические
слова
· заполняет
пустые слоты
в сценарии
· делает
ряд концептуальных
выводов (inferences) о
смысле текста
(в результате
чего способна
отвечать на
поставленные
вопросы по
содержанию)
· на
определенных
этапах подключает
процедуры
· нельзя
получить уровневое
представление
· тексты
узко ограниченной
тематики
Пример:
интегральная
система анализа
Шенка:
1. MARGE
(Memory Response Generation in English) - обработка
концептуальной
информации.
В основе лежит
теория концептуальных
зависимостей
- комплексная
теория человеческого
мышления.
Работает
в двух режимах:
· перефразирование
(перевод входной
фразы на ЯКЗ)
· концептуальный
вывод
2. Модель
SAM (Script Applying Mechanism) является
компьютерной
программой,
которая позволяет
понимать связность
текста за счет
применения
сценариев:
· POLITICS
(ведет диалог,
моделирует
политическую
идеологию)
· PAM ->
TALE-SPIN - порождение
сказок
· FRUMP
- машинное
реферирование
сообщений на
нескольких
языках, чтение
, опирающееся
на понятие
интереса (Integral
Partial Parser)
2.
Терминологические
банки данных:
структуры,
функции, методы
построения.
ТБД
- автоматизированная
система инвентаризации
и машинного
представления
терминологической
лексики и ее
семантизации
в системах
машинного и
человеко-машинного
речевого общения.
Это единая
служба с удобным
доступом, описывающая
все сведения
о термине и
ликвидирующая
неравномерность
описания
терминологии.
Научные
задачи:
· моделирование
терминологической
системы РЯ как
системы подсистем
· построение
общенаучных
и общетеоретических
тезаурусов
· исследование
русской терминологии
Типы традиционного
использования
ТБД:
· справочно-информационное
обслуживание
специалистов
различных
областей знания
· обеспечение
традиционного
перевода
научно-технической
литературы
· обеспечение
АСОТ, включая
системы машинного
перевода
· лингвистическое
обеспечение
авт. систем
информации
· обеспечение
работ по упорядочению
терминологии
· подготовка
и издание
терминологических
словарей
· унификация
определенных
терминов
· подготовка
научных отчетов
о составе РЯ
Организационная
структура ТБД:
· терминологические
центры
· службы
переводов
(переводческая
функция)
· службы
стандартизации
(нормативная
функция)
· университеты
(исследовательская
функция)
· всероссийские
органы НТИ (по
АСУ и ИПС)
Функциональная
структура ТБД:
1. Головной ТБД
- справочно-поисковый
аппарат по
видовым банкам
данных:
· ведение
коммуникативного
формата данных
· организация
и руководство
работами по
передаче данных
в ТБД
· обработка
и ввод данных
· обслуживание
предприятий
2.
Специализированные
ТБД (сбор, хранение
, обработка
информации),
могут включать
существующие
ТБД, словарно-терминологические
службы НТИ:
отбор
представительного
массива источников
ввод
и обновление
терминологической
информации
в БД
передача
информации
другим СТБД
и ГТБД
эксплуатация
СТБД в соответствии
с конкретными
задачами организации.
ТБД
состоит из ряда
массивов, которые
называются
подфондами.
Подфонды
- массивы терминов,
которые создаются
и хранятся в
центральном
органе МФРЯ
(Машинный фонд
РЯ) на базе массивов
первичного
типа.
Подфонды:
специальных
и межотраслевых
терминов,
фигурирующих
в отдельных
отраслях знаний
и деятельности
общенаучных
и общетехнических
терминов
терминоэлементов
(используются
в нескольких
терминосистемах).
3.
Примеры оформления
сложных документов
(сноски, газетная
верстка, колонтитулы
и т. д) в MS Word 5.0.
Сноски:
1. курсор на месте
символа ссылки
на сноску
2. Format, Footnote
3. в поле reference mark ввести
ссылку на сноску
(не более 28 символов)
4. enter
5. ввести текст
сноски (до нескольких
абзацев)
перемещение
между сноской
и текстом: Jump
Footnote
использование
окна сносок:
Esc W S F
переход
из окна в окно:
F1
местоположение
сносок:
· по
умолчанию - на
той же стр., где
ссылка
· Format
Division Layout: same page, end
Газетная верстка:
колонки:
1. Options: Show Layout Yes или Alt-F4
2. Esc Format Division Layout
колонтитулы:
1. курсор в начало
документа
2. ввести текст
+ enter
3. курсор внутрь
текста или
выделить текст
4. Esc Format Running Head: Position:
Top Bottom None Odd Even First Alignment: left margin
Edge-of-paper
5. enter
Быстрое создание
колонтитулов:
1-3 - то же самое
4. верхний колонтитул:
Ctrl+F2
нижний колонтитул:
Alt+F2
На каждой странице
может быть не
более двух
колонтитулов:
верхний и нижний
Выравнивание
колонтитулов:
Format Paragraph или Alt C, Alt R.
Вывод номера
страницы/даты:
1. курсор в то
место колонтитула,
где будет страница.
2. набрать page/date
3. F3
4
Билет 15
1. Когнитивная
лингвистика
и ее основные
исследовательские
программы.
Когнитивная
наука
· некий
раздел научного
знания, центральное
понятие которого
знание и репрезентация
· исследовательская
дисциплина
изучающая
устройство
человеческого
сознания, используя
различные
способы репрезентации
и компьютерную
метафору
· совокупность
современных
эмпирических
знаний, направленных
на поиск ответов
на давние
эпистимологические
вопросы, особенно
о природе знания
Когнитивная
лингвистика
- подход, который
допускает в
лигвитсике
применение
методов когнитивной
науки.
Когнитивная
наука изучает
устройство
и функционирование
концептуальных
структур в
человеческом
сознании,
обеспечивающее
специфическое
для человека
взаимодействие
с другими людьми
и окружающим
миром в целом.
КН возникла
как реакция
на господство
позитивистских
установок
(обезличенная
наука, например,
мат. логика -
постулаты
сложнее самих
высказываний).
В 60-70 гг. произошла
ревизия идей
позитивизма
в пользу реализма
и учета человеческого
фактора.
Началом КН
можно считать
11 сентября 1956,
когда в г. Кембридж
штата Масачусетс
открылся семинар
по теории информации,
где были зачитаны
работа Ньюэлла
и Саймона "Logic
Theoretic", в которой
исследовались
процессы принятия
административных
решений (в
последствие
эта работа была
удостоена
Нобелевской
премии по экономике).
Характерные
черты когнитивной
науки:
· междисциплинарность
(существует
комплекс наук,
которые называются
когнитивными:
когнитивная
лингвистика,
когнитивная
философия,
когитология)
· использование
репрезентации
знаний в качестве
центрального
понятия
· использование
компьютерной
метафоры (сначала
аппаратная
hardware компьютерная
метафора:
человеческий
мозг подобен
компьютеру;
затем программная
software компьютерная
метафора: в
сознании человека
существуют
структуры
подобные компьютерным
программам;
одно из доказательств
- наличие кратковременной
и долговременной
памяти у человека;)
· обращение
к когнитивным
структурам
(сценариям и
фреймам)
· исследовательский
метод - вычислительный
эксперимент
(термин Герберта
Саймона) - метод
интроспекции,
т.е. наблюдения
над языком.
· пониженный
интерес к культурным
и социологическим
аспектам
функционирования
знаний
Метанаучные
элементы и
ценности (вся
совокупность
представлений
о предмете,
которые в рамках
данной научной
концепции
считаются
истинными и
не могут быть
фальсифицированными
(аксиомы)):
В основе КН
лежит реалистическая
традиция:
человеческое
мышление познаваемо
и к нему могут
быть применены
конкретные
исследовательские
методы. Это
воплощается
в понятии материально
символьная
система. Она
состоит из
символов -
материальных
образований,
которые могут
выступать в
качестве выражений.
Символьная
структура -
набор процессов
создания, модификации
и операций с
выражениями.
Предполагается,
что существует
некоторый
уровень анализа,
на котором
можно отвлечься
от физической
природы вещей,
некоторый
уровень изучения
психических
функций человека,
отличный от
нейро-хирургического,
- уровень концептуальных
репрезентаций.
Репрезентативный
уровень оперирования
символьными
системами не
зависит от
материального
носителя информации.
Он изучается
с других уровней.
Когнитивные
единицы:
· концепты
· пропозиции
· схемы
(типа гештальдов)
· динамические
фреймы (сценарии)
Когнитивная
лингвистика
- выяснение
лингвистической
адекватности
когнитивных
построений.
Основные
исследовательские
программы КН:
1. Программа
Чейфа - теория
организации
памяти
три вида памяти:
· поверхностная
(surface)
· кратковременная
(shallow)
· долговременная
(deep)
· иерархия
событий -> иерархия
событий различной
личностной
значимости
· личностная
зависимость
· понятие
текущего сознания
(consciousness)
текущее сознание
восприятие | поверх. память | кратк. память | долговр. память | воображаемое событие |
2. Программа
Роджера Шенка
и его учеников
(Stanford, конец 60-нач.
70 гг.): MARGE (Memory Response
Generation in English) - обработка
концептуальной
информации.
В основе лежит
теория концептуальных
зависимостей
- комплексная
теория человеческого
мышления.
Работает в двух
режимах
· перефразирование
(перевод входной
фразы на ЯКЗ)
· концептуальный
вывод
Шенк утверждал,
что знания не
могут быть
истолкованы
в лингвистических
терминах и
разработал
язык концептуальных
зависимостей:
P-Trans (физическое
перемещение),
M-Trans (интеллектуальное
перемещение).
Шенком была
постулирована
независимость
языкового
представления
от ЕЯ, тем не
менее язык КЗ
оказался привязан
к поверхностному
синтаксису
английского
языка. Каждое
высказывание
запускает
цепочку концептуальных
выводов (inferences),
позволяющих
правильно
понимать ситуацию
(Мила была голодна,
она взяла
путеводитель
Митчелина).
Модель SAM (Script
Applying Mechanism) является
компьютерной
программой,
которая позволяет
понимать связность
текста за счет
применения
сценариев:
· POLITICS
(ведет диалог,
моделирует
политическую
идеологию)
· PAM ->
TALE-SPIN - порождение
сказок
· FRUMP
- машинное
реферирование
сообщений на
нескольких
языках, чтение
, опирающееся
на понятие
интереса (Integral
Partial Parser)
Достижения
Шенка:
· процедурная
адекватность
· демонстрация
роли знаний
в процессе
понимания ЕЯ
· построение
ряда конкретных
когнитивных
моделей
· демонстрация
роли когнитивных
ожиданий в
понимании
Категории,
встречающиеся
у Шенка:
· интерес
· объяснение
· память
(организация
концептуальной
памяти
· ожидание
· понимание
движимого
ошибками
3. Программа
Джорджа Лакоффа:
· порождающая
семантика
· лингвистические
гештальды
(целое - не есть
сумма частей)
· теория
семантического
прототипа
(базисный уровень)
· теория
метафоры
(неосознанные
и творческие
когнитивные
процессы)
Эксперименциальная
лингвистика
1. Концептуализация
двух сортов:
· базового
уровня (семантика
прототипов)
· образные
схемы (image schemas): контейнер,
вместилище;
путь; контакт;
часть-целое
2. Когнитивные
творческие
процессы:
· метафоризация
· метонимия
· схематизация
· категоризация
3. Когнитивные
нетворческие
(базовые) процессы
· фокусировка
· сканирование
· сдвиг
точки зрения
4. Теория ментальных
пространств
· пространство
прошлого
· пространство
будущего
· непосредственное
действие (?)
· вымышленная
ситуация
4. Программа
Тальми об
отношении
грамматики
к мышлению
Грамматика
- одна из когнитивных
сфер человека.
Цели:
· Изучение
семантико-постранственных
отношений
· Фигура
и фон
· Изучение
каузативов
(пить - поить)
Когнитивные
категории:
1. измерение:
|
|
2. плексность
(plexity):
|
|
3.граничный
статус:
|
|
4. расчлененность:
|
|
5. Степень
распространения:
|
|
6. Модель дистрибуции
Категория
динамики сил
задумана тальми
как обобщение
казуальности.
3
Билет
2
1.
Понятие репрезентации
в науках о языке
и мышлении
человека.
Понятие
репрезентации
знаний является
одним из центральных
в когнитивной
науке вообще,
и в когнитивной
лингвистике
в частности.
1.Репрезентация
- (общефилософский
смысл) сущность
произвольной
природы, выступающая
в познавательной
деятельности
человека в
качестве заместителя
некоторой
другой сущности.
Человек творит
мир артефактов:
материальные
(орудия)
когнитивные
(орудия мысли)
Репрезентация
- когнитивный
артефакт.
2.Репрезентация
- символьное
выражение на
специальном
репрезентационном
языке, выступающие
в познавательной
деятельности
человека в
качестве заместителя
некоторой
сущности иной
природы. Например
мат. модели,
любые теории.
3.Репрезентация
- (в лингвистике)
символьное
выражение на
специальном
репрезентационном
языке, рассматриваемое
как отличное
от непосредственно
данной формы
осуществления
некоторого
другого символьного
же выражения,
а также сама
эта непосредственно
данная форма,
рассматриваемая
в ряде других
форм.
4.Репрезентация
- некоторая
гипотетическая
ментальная
структура,
замещающая
ту или иную
сущность из
внешнего мира.
Предполагается,
что существует
некоторый
уровень анализа,
на котором
можно отвлечься
от физической
природы вещей,
некоторый
уровень изучения
психических
функций человека,
отличный от
нейро-хирургического,
- уровень концептуальных
репрезентаций.
На этом уровне
моделируются
когнитивные
процессы
(символьно/на
ЭВМ).
Типология
репрезентаций:
1.
представление
знаний (концептуальные
репрезентации)
vs представление
языковых структур
(фонологические,
синтаксич.,
семантические
репрезентации)
Репрезентация
языковых структур
- представление
высказывания,
предложения,
текста (требование
лингвистической
релевантности).
Понимание->
анализ -> сем.
репрезентация.
Компоненты
языковой структуры
- компоненты
языка, а концептуальные
репрезентации
ими не являются.
2. сентенциональные | vs | идеограмматические | |
(логические) построены язык | (аналоговые хранятся |
Иногда
сюда включают
еще и списочные
представления
(таблицы, БД)
3. декларативные | vs | процедурные | |
(структурирование | точный способ (указание на действие) |
4.
формализованные
vs неформализованные
5. внешние
vs внутрисистемные
6. логические | vs | эвристические | ||||||
представления исчисление | сетевые. фреймовые, продукционные
Обсуждение:
Название реферата: Лингвистика
Вам также могут понравиться эти работы:
|