Bioremediation Technologies For Petroleum Impacted Essay, Research Paper
Executive Summary In this consideration of bioremediation technologies for petroleum-impacted sites, McDuff Inc. found two technologies fitting to Three Rivers Industries needs. These were Regenesis Bioremediation Products Oxygen Release Compound and NESA and Associates Precision Enhanced Natural Attenuation system. Both technologies provide low cost alternatives to prevalent technologies, such as permanent remediation systems. In researching these technologies McDuff found that costs were, indeed, much lower than usual, and clean up times were generally quicker than with other technologies. Special considerations do need to be taken into account for implementation of the technologies. These considerations include mass to dissolved oxygen ratio s, sorption/desorption occurrence, COD/BOD levels, and oxidation/reduction (Redox) levels. The considered technologies are not likely to work effectively without the proper parameters existing or being amended for. As with any innovative technology there are both pros and cons associated with the technology. In both of the technologies considered, the pros far outweigh the cons for the appropriate sites. Introduction Today s Environmental Protection Agency requirements have become much more stringent and require much more active participation by Underground Storage Tank owners. Due to these increased responsibilities many companies are searching for innovative, quick, effective, and low-cost alternatives to prevailing technologies. In this report McDuff has detailed certain aspects of two such technologies. These technologies are Regenesis Bioremediation Products Oxygen Release Compound (ORC ) and NESA and Associates, Inc. s Precision Enhanced Natural Attenuation (PENA ) system. Considered Technologies Regenesis Bioremediation Products, Oxygen Release Compound (ORC) Technology Overview: Oxygen Release Compound is a powder of magnesium peroxide used to remediate organic hydrocarbons. The powder is mixed into a slurry with water and injected into the contaminated area using direct push technology. This patented formula is based on the principal that naturally occurring micro-organisms thrive in the oxygen-enriched environment facilitated by ORC (Regenesis Homepage, pg. 1). The technology is currently in use in more than 3,000 petroleum-impacted sites in the United States. Below is a cross section of what a typical site and the oxygen barrier wall formed by the injection of ORC : Criteria for Implementation: Regenesis recommends certain parameters be met in order to properly implement and effectively remediate sites treated using ORC . These parameters should provide a low-cost, quick remediation of the site. These parameters are: (1) mass of hydrocarbons, (2) sorption/desorption, (3) chemical and biological oxygen demand (COD/BOD), (4) oxidation/reduction potential (REDOX) of soil and groundwater. (The ORC Oracle, pg. 2) Mass Considerations: The recommendation of appropriate mass to dissolved oxygen ratio is included in the software available from the company. The recommended additional demand factors range from 7 times to 12 times in a soil composition ranging from sands to clay. Specific recommendations can be found on the software, available by contacting Scott Wilson at 708-984-3616, or on The ORC Oracle web page at http://www.regenesis.com/oracle.htm. Sorption/Desorption Considerations: If a site is highly contaminated it is likely that much of the contamination will be dissolved in the groundwater, and not attached to the soil. It is much more difficult to remove hydrocarbons from water than soil. Regenesis, therefore, recommends that the initial application of ORC be more than otherwise anticipated to account for this possibility. COD/BOD Considerations: COD is a measure of how much oxygen is consumed by chemical processes in the environment. BOD is the measure of how much oxygen is consumed by biological processes in the environment. Obviously, in these cases it is desirable to maximize the biological consumption of oxygen and minimize the chemical consumption of oxygen. Regenesis has stated that, ORC application may not be feasible when COD results are in excess of 500 mg/L. (The ORC Oracle, pg. 3) REDOX Considerations: The oxidation/reduction potential is a measure of an electrical charge created by chemical and biological reactions occurring in the environment. A highly reduced area will exhibit negative values for REDOX readings. These values in the environment often indicate that metals are present. Metals react more rapidly and more easily with oxygen than do the desired microorganisms. This will therefore inhibit the efficiency of ORC . Regenesis suggests that sites with a REDOX value of less than 200 milli-electron volts be tested for both reduced metal species and COD/BOD. (The ORC Oracle, pg. 3) Estimated Time for Implementation and Clean up: The time for implementation of any remediation varies from state to state based upon the efficiency and staffing of the EPA in that region. Expected state approval times can range from one month to over a year. The quantity of background information each state requires will have the largest influence on implementation time. The actual application of ORC will vary depending upon the site size and geological conditions. An average of 11 to 12 injections per day is typical. The number of injections depends on site contaminant levels, site geology and hydrogeology, and site size. Clean up time, again, depends on the quantity of contamination and the size and depth of the contaminant plume. Clean up time may also be affected by the presence of groundwater. Sites with large amounts of groundwater will typically take longer than sites of moderate groundwater saturation. Clean up has been achieved in as little as one year at certain sites. Other three-year-old sites continue to be remediated using ORC .
Cost for Implementation: Initial sampl
REGENESIS Homepage. Welcome to the Regenesis Homepage Regenesis the makers of Oxygen Release Compound, ORC . http://www.regenesis.com/> April 4, 1998. The ORC Oracle. The ORC Oracle Volume II, Number 2. http://www.regenesis.com/oracle.htm> April 4, 1998. NESA & Associate, Inc. customer information letter. An Absolute Breakthrough for Contaminated UST Sites. October 1, 1996.