Perception Essay, Research Paper
Perception
INTRODUCTION Perception is defined as a process by which organisms interpret and organize sensation to produce a meaningful experience of the world. Sensation usually refers to the immediate, relatively unprocessed result of stimulation of sensory receptors in the eyes, ears, nose, tongue, or skin. Perception, on the other hand, better describes one’s ultimate experience of the world and typically involves further processing of sensory input. In practice, sensation and perception are virtually impossible to separate, because they are part of one continuous process. Our sense organs translate physical energy from the environment into electrical impulses processed by the brain. For example, light, in the form of electromagnetic radiation, causes receptor cells in our eyes to activate and send signals to the brain. But we do not understand these signals as pure energy. The process of perception allows us to interpret them as objects, events, people, and situations. Without the ability to organize and interpret sensations, life would seem like a meaningless jumble of colors, shapes, and sounds. A person without any perceptual ability would not be able to recognize faces, understand language, or avoid threats. Such a person would not survive for long. In fact, many species of animals have evolved exquisite sensory and perceptual systems that aid their survival. PRINCIPLES OF PERCEPTUAL ORGANIZATION Organizing raw sensory stimuli into meaningful experiences involves cognition, a set of mental activities that includes thinking, knowing, and remembering. Knowledge and experience are extremely important for perception, because they help us make sense of the input to our sensory systems. You could probably read the text, but not as easily as when you read letters in their usual orientation. Knowledge and experience allowed you to understand the text. You could read the words because of your knowledge of letter shapes, and maybe you even have some prior experience in reading text upside down. Without knowledge of letter shapes, you would perceive the text as meaningless shapes, just as people who do not know Chinese or Japanese see the characters of those languages as meaningless shapes. Reading, then, is a form of visual perception. Note that in the example above, you did not stop to read every single letter carefully. Instead, you probably perceived whole words and phrases. You may have also used context to help you figure out what some of the words must be. For example, recognizing upside may have helped you predict down, because the two words often occur together. For these reasons, you probably overlooked problems with the individual letters?some of them, such as the n in down, are mirror images of normal letters. You would have noticed these errors immediately if the letters were right side up, because you have much more experience seeing letters in that orientation. How people perceive a well-organized pattern or whole, instead of many separate parts, is a topic of interest in Gestalt psychology. According to Gestalt psychologists, the whole is different than the sum of its GESTALT LAWS¨parts. Gestalt is a German word-meaning configuration or pattern. OF GROUPING The three founders of Gestalt psychology were German researchers Max Wertheimer, Kurt Koffka, and Wolfgang K?hler. These men identified a number of principles by which people organize isolated parts of a visual stimulus into groups or whole objects. There are five main laws of grouping: proximity, similarity, continuity, closure, and common fate. A sixth law, that of simplicity, encompasses all of these laws. Although most often applied to visual perception, the Gestalt laws also apply to perception in other senses. When we listen to music, for example, we do not hear a series of disconnected or random tones. We interpret the music as a whole, relating the sounds to each other based on how similar they are in pitch, how close together they are in time, and other factors. We can perceive melodies, patterns, and form in music. When a song is transposed to another key, we still recognize it, even though all of the notes have changed. 1) PROXIMITY The law of proximity states that the closer objects are to one another, the more likely we are to mentally group them together 2) SIMILARITY The law of similarity leads us to link together parts of the visual field that are similar in color, lightness, texture, shape, or any other quality 3) CONTINUITY The law of continuity leads us to see a line as continuing in a particular direction, rather than making an abrupt turn 4) CLOSURE According to the law of closure, we prefer complete forms to incomplete forms.This tendency allows us to perceive whole objects from incomplete and imperfect forms. 5)COMMON FATE The law of common fate leads us to group together objects that move in the same direction . 6) Simplicity Central to the approach of Gestalt psychologists is the law of pr?gnanz, or simplicity. This general notion, which encompasses all other Gestalt laws, states that people intuitively FIGURE¨prefer the simplest, most stable of possible organizations & GROUND Not only does perception involve organization and grouping, it also involves distinguishing an object from its surroundings. Notice that once you perceive an object, the area around that object becomes the background. For example, when you look at your computer monitor, the wall behind it becomes the background. The object, or figure, is closer to you, and the background, or ground, is farther away. Gestalt psychologists have devised ambiguous figure-ground relationships?that is, drawings in which the figure and ground can be reversed?to illustrate their point that the whole is different from the sum of its parts. Consider the accompanying illustration entitled “Figure and Ground.” You may see a white vase as the figure, in which case you will see it displayed on a dark ground. However, you may also see two dark faces that point toward one another. Notice that when you do so, the white area of the figure becomes the ground. Even though your perception may alternate between these two possible interpretations, the parts of the illustration are constant. Thus, the illustration supports the Gestalt position that the whole is not determined solely by its parts. The Dutch artist M. C. Escher was intrigued by ambiguous figure-ground relationships. Although such illustrations may fool our visual systems, people are rarely confused about what they see. In the real world, vases do not change into faces as we look at them. Instead, our perceptions are remarkably stable. Considering that we all experience rapidly changing visual input, the stability of our perceptions is more amazing than the occasional tricks that fool our perceptual systems. How we perceive a stable world is due, in part, to a number of factors that maintain perceptual constancy. PERCEPTUAL CONSTANCY As we view an object, the image it projects on the retinas of our eyes changes with our viewing distance and angle, the level of ambient light, the orientation of the object, and other factors. Perceptual constancy allows us to perceive an object as roughly the same in spite of changes in the retinal image. Psychologists have identified a number of perceptual constancies, including lightness constancy, color constancy, shape constancy, and size constancy. LIGHTNESS CONSTANCY Lightness constancy means that our perception of an¨ object’s lightness or darkness remains constant despite changes in illumination. To understand lightness constancy, try the following demonstration. First, take a plain white sheet of paper into a brightly lit room and note that the paper appears to be white. Then, turn out a few of the lights in the room. Note that the paper continues to appear white. Next, if it will not make the room pitch black, turn out some more lights. Note that the paper appears to be white regardless of the actual amount of light energy that enters the eye. Lightness constancy illustrates an important perceptual principle: Perception is relative. Lightness constancy may occur because the white piece of paper reflects more light than any of the other objects in the room?regardless of the different lighting conditions. That is, you may have determined the lightness or darkness of the paper relative to the other objects in the room. Another explanation, proposed by 19th-century German physiologist Hermann von Helmholtz, is that we unconsciously take the lighting of the room into consideration when judging the COLOR CONSTANCY Color constancy is closely related to¨lightness of objects. lightness constancy. Color constancy means that we perceive the color of an object as the same despite changes in lighting conditions. You have experienced color constancy if you have ever worn a pair of sunglasses with colored lenses. In spite of the fact that the colored lenses change the color of light reaching your retina, you still perceive white objects as white and red objects as red. The explanations for color constancy parallel those for lightness constancy. One proposed explanation is that because the lenses tint everything with the same color, we unconsciously “subtract” that color from the scene, leaving the SHAPE CONSTANCY Another perceptual constancy is shape¨original colors. constancy, which means that you perceive objects as retaining the same shape despite changes in their orientation. To understand shape constancy, hold a book in front of your face so that you are looking directly at the cover. The rectangular nature of the book should be very clear. Now, rotate the book away from you so that the bottom edge of the cover is much closer to you than the top edge. The image of the book on your retina will now be quite different. In fact, the image will now be trapezoidal, with the bottom edge of the book larger on your retina than the top edge. (Try to see the trapezoid by closing one eye and imagining the cover as a two-dimensional shape.) In spite of this trapezoidal retinal image, you will continue to see the book as rectangular. In large measure, shape constancy occurs because your visual system takes depth into SIZE CONSTANCY Depth perception also plays a major role in size¨consideration constancy, the tendency to perceive objects as staying the same size despite changes in our distance from them. When an object is near to us, its image on the retina is large. When that same object is far away, its image on the retina is small. In spite of the changes in the size of the retinal image, we perceive the object as the same size. For example, when you see a person at a great distance from you, you do not perceive that person as very small. Instead, you think that the person is of normal size and far away. Similarly, when we view a skyscraper from far away, its image on our retina is very small?yet we perceive the building as very large. Psychologists have proposed several explanations for the phenomenon of size constancy. First, people learn the general size of objects through experience and use this knowledge to help judge size. For example, we know that insects are smaller than people and that people are smaller than elephants. In addition, people take distance into consideration when judging the size of an object. Thus, if two objects have the same retinal image size, the object that seems farther away will be judged as larger. Even infants seem to possess size constancy. Another explanation for size constancy involves the relative sizes of objects. According to this explanation, we see objects as the same size at different distances because they stay the same size relative to surrounding objects. For example, as we drive toward a stop sign, the retinal image sizes of the stop sign relative to a nearby tree remain constant?both images grow larger at the same rate DEPTH PERCEPTION Depth perception is the ability to see the world in three dimensions and to perceive distance. Although this ability may seem simple, depth perception is remarkable when you consider that the images projected on each retina are two-dimensional. From these flat images, we construct a vivid three-dimensional world. To perceive depth, we depend on two main sources of information: binocular disparity, a depth cue that requires both eyes; and monocular cues, which allow BINOCULAR DISPARITY Because our eyes¨us to perceive depth with just one eye are spaced about 7 cm (about 3 in) apart, the left and right retinas receive slightly different images. This difference in the left and right images is called binocular disparity. The brain integrates these two images into a single three-dimensional image, allowing us to perceive depth and distance. For a demonstration of binocular disparity, fully extend your right arm in front of you and hold up your index finger. Now, alternate closing your right eye and then your left eye while focusing on your index finger. Notice that your finger appears to jump or shift slightly?a consequence of the two slightly different images received by each of your retinas. Next, keeping your focus on your right index finger, hold your left index finger up much closer to your eyes. You should notice that the nearer finger creates a double image, which is an indication to your perceptual system that it is at a different depth than the farther finger. When you alternately close your left and right eyes, notice that the nearer finger appears to jump much more than the more distant fin
Bibliography
Anderson, John R. CognitivevBIBILOGRAPHY BOOKS Applications from; CONSUMER BEHAVIOUR ,vPsychology and its Implications. Wolman, Benjamin B., ed. The Encyclopedia of Psych iatry, Psychology,vGRIFFIN Definitions from; THE BRITANICA ENCYCLOPEDIAvand Psychoanalysis
31b