РефератыИностранный языкGeGenetics Essay Research Paper GENETIC ENGINEERING

Genetics Essay Research Paper GENETIC ENGINEERING

Genetics Essay, Research Paper


GENETIC ENGINEERING


“career of the future”


Genetic engineering is an umbrella term that can cover a wide range of ways of


changing the genetic material — the DNA code — in a living organism. This code contains


all the information, stored in a long chain chemical molecule, which determines the


nature of the organism. Apart from identical twins, genetic make-up is unique to each


individual. Individual genes are particular sections of this chain, spaced out along it,


which determine the characteristics and functions of our body. Defects of individual


genes can cause a malfunction in the metabolism of the body, and are the roots of many


?genetic? diseases.


In a sense, man has been using genetic engineering for thousands of years. We


weren’t changing DNA molecules directly, but we were guiding the selection of genes.


For example the domestication of plants and animals.


Recombinant DNA technology is the newest form of genetic engineering, which


involves the manipulation of DNA on the molecular level. This is a totally new process


based on the science of molecular biology, a relatively new science only forty years old.


It represents a major increase in our ability to improve life. But a negative aspect is that it


changes the forms of life we know of, possibly damaging our environment


It has been known for some time that genetic information can be transferred


between micro-organisms. This is process it done via plasmids (small circular rings of


DNA) or phages (bacterial viruses). Both of these are termed vectors, this is because of


their ability to move genetic material. In general this is limited to simpler species of


bacteria. nevertheless, this can restriction can be overcome with the use of genetic


engineering because it allows the introduction of any gene.


While genetic engineering is beginning to be used to produce enzymes, the


technology itself also depends on the harnessing of enzymes, which are available in


nature. In the early 1970s Herbert Boyer, working at the University of California Health


Science Centre in San Francisco, and Stanley Cohen at Stanford University found that it


was possible to insert into bacteria genes they had removed from other bacteria. First


they learned the trick of breaking down the DNA of a donor organism into manageable


fragments. Second, they discovered how to place such genes into a vector, which they


used to ferry the fragments of DNA into recipient bacteria. Once inside its new host, a


transported gene divided as the cell divided, leading to a clone of cells, each containing


exact copies of the gene. This technique became known as gene cloning, and was


followed by the selection of recipient cells containing the desired gene.


The enzymes used for cleaving out the DNA pieces act in a highly specific way.


Genes can, therefore, be removed and transferred from one organism to another with


extraordinary precision. Such manoeuvres contrast sharply with the much less predictable


gene transfers that occur in nature. By mobilising pieces of DNA in this way (including


copies of human genes), genetic engineers are now fabricating genetically modified


microbes for a wide range of applications in industry, medicine and agriculture.


The underlying idea of transferring genes between cells is quickly explained.


However the actual practice is an extremely complicated process. The scale of the


problem can be gauged from the astronomical numbers involved: the DNA of even the


simplest bacterium contains 4,800,00 pairs of bases. But there is only one copy of each


gene in each cell.


First, restriction enzymes are used to snip the DNA into smaller pieces, each


containing one or just a few genes. These enzymes cut DNA in very precise ways. They


recognise particular stretches of bases (termed recognition sequences) and snip each


strand of the double helix at a particular place. Whenever the recognition sequence


appears in the long DNA chain, the enzyme makes a cut. Whenever the same enzymes


are used to break up a certain piece of DNA, they always produce the same set of


fragments. The cuts produce pieces of double helix with short stretches of single


stranded DNA at each end. These are know as sticky ends. If the enzyme is allowed to act


for a limited time, it may not have a chance to attack all the recognition sequences in the


chain. This will result in longer fragments.


As in natural DNA replication, bases have an inherent propensity to join up with


their partners A with T, for example, and G with C. So too with sticky ends. For


example, the sequence TTAA will tend to re-associate with AATT. Genetic


engineers use another type of enzyme, DNA ligase, to make the union permanent. This is


the key principle of genetic engineering the use of two types of enzyme to cut out one


piece of DNA and then to attach it to another piece. The genetic engineer’s toolkit now


contains several hundred different restriction enzymes. Each is a precision instrument for


fragmenting DNA in a particular way. Some recognise different base sequences; others


recognise the same sequence but snip at a different point within or next to the sequence.


Ferrying DNA to a new home Once a piece of DNA has been broken up into a mixture of


fragments, these can be separated into different sized pieces. The next stage is to insert a


particular DNA fragment into a vector. Often this is a plasmid, a selfreplicating circular


piece of DNA that can become incorporated in the bacterial nucleus and later become


detached, carrying genes with it. Plasmids seem to have evolved as a natural mechanism


for moving genes around among bacteria.


To insert a DNA fragment into a vector, the genetic engineer first splits open the


plasmid by adding the same restriction enzyme that was used to release the DNA


fragment from the DNA of the donor organism. This creates sticky ends complementary


to those on the fragment to be transplanted. The fragment thus fits neatly into the gap in


the vector DNA, where it is firmly annealed by DNA ligase.


Next, the plasmid is allowed to infect a bacterium, in which it can replicate. Once


inside, the vector and thus the foreign gene replicates every time the cell divides. As


bacteria divide about once every 20 minutes, gene cloning can lead to a billionfold


increase in the number of copies of a particular gene within 10 hours or so. The


bacterium simply treats it and replicates it as part of its own DNA.


Not all the countless cells in a culture of bacteria become infected when a vector


is added. One method of distinguishing those that do contain the vector is to incorporate


into it a gene that confers resistance to a particular antibiotic. When the bacteria are


cultured later, that antibiotic is included in the nutrient medium to inhibit any non


resistant organisms. Only bacteria that have taken up the vector (and thus the resistance


gene) are able to grow. A similar trick distinguishes bacteria carrying the vector plus a


new gene from unwanted ones containing the unaltered vector.


By using a variety of restriction enzymes to cut up DNA into manageable pieces,


and then cloning these sequences, it is possible to create a DNA library a collection of


sequences carrying all the genetic information in a particular organism. But much of this


information is not expressed at any particular moment. Genetic engineers are usually


interested only in the genes that are actually functioning at any one time for example,


one responsible for producing a specific enzyme. The DNA that codes for hereditary


messages specifying current activities of this sort is much smaller in quantity than the


total DNA in a cell. This information is to be found in messenger RNA. An enzyme


called reverse transcriptase allows its messages to be translated into DNA. This copy


DNA (cDNA) is then cloned into bacteria, giving a library, much smaller than that of a


cell’s total DNA, that will certainly contain the desired gene. But this still leaves the final


challenge of locating the specific bacteria containing the spliced gene. One method is to


spread the bacteria infected with the vector onto a nutrient medium, on which each


individual cell can spawn millions of progeny and thus appear as a visible colony. The


genetic engineer also needs to know the amino acid sequence of the protein coded by the


gene. By following the genetic code, a corresponding stretch of RNA can now be


synthesised chemically. During the synthesis, radioactive atoms are incorporated into the


RNA, making a gene probe.


The next step is to make, on special filter paper, a replica of the plate with the


colonies of the cloned bacteria. Treated with caustic soda, the bacteria burst open and


release their DNA, which is also broken into single strands that stick to the filter. The


gene probe is now added. If the correct sequence is present, the probe will pair


tenaciously with it. The filte

r is now washed to remove the unbound probe, and placed


over a piece of x-ray film. When developed, the film reveals the location of the


radioactivity as a black spot. The corresponding colony on the original plate thus


contains the bacteria carrying the required gene.


The applications of genetic engineering are vast, probably the most well known is


gene therapy in the medical world. It involves the introduction of a gene into somatic


cells and enablement of its products to alleviate a disorder caused by the loss or


malfunctioning of a vital gene product. Involving the latest DNA technology, it is the


most rapidly advancing form of molecular medicine, which is concerned with the cause


of disease at a molecular level. The scope for gene therapy has increased over in the last


few years with the possibility of a therapeutic gene for diseases such as cancer, AIDS,


cystic fibrosis, and even neurological disorders such as Parkinson’s disease and


Alzheimer’s disease.


The potential of gene therapy to treat specific human diseases, has hardly become


apparent yet but it is believed be the way forward in the treatment of many diseases.


Trials in United States are being carried out in an attempt to treat AIDS. The strategies


are in the form of a treatment which will protect susceptible cells from infection by the


virus once it is in the body, or to inhibit the replication of HIV in already affected cells.


Moreover to try to boost the immune response to HIV and HIV-infected cells. This and


many other diseases have become to show potential of being treated in this fashion.


Gene therapy has resulted in the possible reduction in cancerous tumours.


Tumours in lung cancer patients shrunk or stopped growing when scientists inserted


healthy genes into to replace defective or missing genes, it demonstrated that by


correcting a single genetic abnormality in lung cancer cells may be enough to slow down


or stop the spread of cancer. Further research into the use of gene therapy to cure or help


cancer victims has been continued after the discovery of this method.


As well as in medicine there are many applications of genetic engineering in


agriculture. Genetically engineered hormones are available, and may be used in the


future to increase meat or milk yields of livestock. Soon disease may be wiped out with


the use of genetically engineered vaccines. Fertilisers may become obsolete, as scientists


attempt to introduce ntirogenase genes into plants, the gene coding for the enzyme that


catalyses the breakdown of atmospheric nitrogen. Plants could also in theory be able to


produce their own insecticides thus making artificial ones obsolete. Crops could even be


engineered to grow in naturally inhospitable areas and could effectively make food


shortages a thing of the past.


Recently, genetic technology has shown that it will affect our everyday lives, such


as in the grocery store. There has been work in the growing of genetically engineered


foods. The government has even approved the sale of certain products. The nutritional


value can be increased, as well as the hardiness of crops.


Another interesting idea is that of transgenic animals. Transgenic technology


bypasses conventional breeding by using artificially constructed parasitic genetic


elements as vectors to multiply copies of genes, and in many cases, to carry and smuggle


genes into cells that would normally exclude them. (Parasites, by definition, require the


host cell’s biosynthetic machinery for replication.). Once inside cells, these vectors slot


themselves into the host genome. In this way, transgenic organisms are made carrying the


desired transgenes. The insertion of foreign genes into the host genome has long been


known to have many harmful and fatal effects including cancer; and this is borne out by


the low success rate of creating desired transgenic organisms. Typically, a large number


of cells, eggs or embryos have to be injected or infected with the vector to obtain a few


organisms that successfully express the transgene(s).


The most common vectors used in gene biotechnology are a mosaic


recombination of natural genetic parasites from different sources, including viruses


causing cancers and other diseases in animals and plants, with their pathogenic functions


‘crippled’, and tagged with one or more antibiotic resistance ‘marker’ genes, so that cells


transformed with the vector can be selected. For example, the vector most widely used in


plant genetic engineering is derived from a tumour-inducing plasmid carried by the


bacterium Agrobacterium tumefaciens. In animals, vectors are constructed from


retroviruses causing cancers and other diseases. Unlike natural parasitic genetic elements


that have varying degrees of host specificity, vectors used in genetic engineering are


designed to overcome species barriers, and can therefore infect a wide range of species.


Thus, a vector currently used in fish has a framework from the Moloney murine


leukaemic virus, which causes leukaemia in mice, but can infect all mammalian cells. It


has bits from the Rous Sarcoma virus, causing sarcomas in chickens, and from the


vesicular stomatitis virus, causing oral lesions in cattle, horses, pigs and humans.


Genetic fingerprinting is a well-known application of genetic engineering, it is


often used in an aid to identify the perpetrator of a crime. This is possible because


everyone (except identical twins) has a unique genetic fingerprint. The process was


developed by Alecs Jeffreys at the University of Leicester in 1984. He noticed that there


were unusual sequences in DNA that seemed out of place. These sequences


(minisatellites) are repeated many times throughout DNA. A DNA probe is used to


analyse these patterns. A DNA probe is a synthetic length of DNA made up of a repeated


sequence of bases. This is cloned to make a batch of probes using the recombinant DNA


into E. Coli bacterium technique. A radioactive label is then attached by exchanging all


the phosphate molecules with radioactive isotopes of the same species. The DNA which


is to analysed is then fragmented using a restriction enzyme, placed on agarose gel and


the fragments separated using a process called electrophoresis. Fragments of DNA have


negative charges, so when and anode is placed at the other end of the gel, the DNA is


attracted to it. The distances they move are dependent on the size of the fragment, with


the lighter, shorter fragments moving the furthest. Once they are separated, the fragments


are transferred to a nylon membrane are treated with the DNA probe. These bind to any


complementary minisatellite sites, and make them show up on x-ray film because of the


radioactivity. The pattern of bands revealed is known as the DNA fingerprint. This would


seem fail safe, but there are many problems associated with this technique. Samples


taken from the victim’s body will more than likely have the victims DNA as well, not to


mention any bacterial or fungal DNA present. Dyes used in clothes can also alter


restriction enzymes, making them fragment in the wrong place. DNA fingerprinting is


therefore not infallible.


People rightly fear that what they eat could harm them if it has been gene altered.


It is also quite possible that products can be made safer and less allergenic than before


this new technology. If food can be grown more economically as a product of gene


technology, world hunger can be virtually stamped out.


It is feared by some people that we might knock nature off balance by interfering


with it. There is no possible way that it could truthfully be said that we haven’t done so


already. Ever since we discovered how to make fire, we have defeated nature’s balance. It


does not take genetic medicine to increase our populations beyond what natural barriers


had been in place, such as disease and famine.


When the possible threats and the potentially helpful applications are weighed it


appears that research into the possibilities should continue. If people’s fears of what can


be done wrong were to stop the industry it still would not insure that in the future the


technology won’t be used in such a way. If future governments really wanted to they


could rediscover it and use it immorally, regardless of what we do now. Scientists should


learn how to use it safely and responsibly now so that, hopefully, future scientists will do


the same.


The current ethic followed by genetic scientists does not allow genetic


manipulation in human embryos. Lack of knowledge does keep scientists wary of what


they are doing in human genetics. However, their caution is somewhat less with other


animals.


Genetic engineering has and will undoubtedly provide the means to help


mankind. But we must consider whether it is socially or ethically desirable. Along with


technology must go an ethical evaluation. Early trials with growth enhanced pigs


revealed disastrous side-effects for the animals.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Genetics Essay Research Paper GENETIC ENGINEERING

Слов:3156
Символов:20900
Размер:40.82 Кб.