Реферат на тему:
Диференціальні рівняння першого порядку,
не розв
’
яз
а
ні відносно похідної.
1. Основні поняття і означення, теорема про достатні умови існування і єдності розв
’
язку.
Диференціальне рівняння першого порядку, не розв’язані відносно похідної має вигляд
(5.1)
Найбільш часто зусрічаються диференціальні рівняння першого порядку -
ої степені.
Означення 5.1.
Функція , визначена і
(5.2)
неперервнодиференційовна на називається розв’язком Д.Р. (5.1), якщо вона після підстановки перетворює Д.Р. (5.1) в
тотожність
Означення 5.2.
Будемо говорити, що рівняння визначає розв’язок Д.Р.(5.1) в нормальній формі, якщо воно визначає як функцію і вона являється розв’язком Д.Р.(5.1).
Означення 5.3.
Рівняння ,
,, визначає розв’язок Д.Р.(5.1) в параметричній формі, якщо
Криві на ел., які відповідають розв’язкам, будемо називати
Задача Коші - задача знаходження розв’язків, які задовільняють умови .
Означення 5.4.
Говорять, що задача Коші для Д.Р.(5.1) з початковими умовами має єдиний розв’язок, якшо через в достатньо малому околі її проходить стільки , скільки напрямків поля визначає Д.Р. в цій точці. В противному – не єдиний розв’язок.
Теорема 5.1.
(про існування і єдиність розв’язку задачі Коші).
Якщо функція задовільняє наступним умовам:
а) Являється визначеною і неперервною разом зі своїми ЧП в деякому замкненому околі т.;
б);
в);
то Д.Р.(1) має єдиний розв’язок , визначений і неперервно диференційовний в околі т , задовільняючий умови і такий, що
► Без доведення ◄
Припустимо, що розв’язуючи Д.Р.(1) відносно , ми знайдемо дійсні розв’язки
(5.3)
де визначені в обл. так, що маємо Д.Р. першого порядку, розв’язаних відносно . Припустимо, що в точці , напрямок поля, визначений кожним Д.Р. (5.3), різний. Так що різних рівнянь не можуть дотикатися друг друга на .
Нехай кожне Д.Р. (5.3) на має загальний інтеграл
(5.4)
Означення 5.5.
Сукупність інтегралів (5.4) будемо називати загальним інтегралом Д.Р. (5.1) в обл. .
Інколи замвсть співвідношення (5.4) записують
(5.5)
Якщо поле на не задовільняє сказаному вище, тобто існує хоча б одна точка , в якій значення хоча б двох функцій співпали, то відповідаючі Д.Р. дотикаються друг друга в точці . Тому крім Д.Р. (5.3), будуть ще склеєні . Всі вони будуть входити в (5.4) або (5.5).
В загальному випадку Д.Р. (5.1) не удається розв’язати відносно в елементарних функціях. В цих випадках шукають однопараметричне сімейство в вигляді
(5.6)
яке називається загальним інтегралом Д.Р. (5.1).
Якщо сімейство задано в вигляді
(5.7)
то воно називається загальним розв’язком Д.Р. (5.1)
Зауважимо, що в (5.6) можуть входити і розв’язки Д.Р. виду (5.3), коли -комплексні. Ми таких Д.Р. не будемо розглядати, тому відповідні їм розв’язки треба виключати.
Сімейство , заданих в параметричному вигляді
(5.8)
будемо називати загальними розв’язками Д.Р. в параметричній формі.
Означення 5.6.
Розв’язок Д.Р. (5.1) будемо називати частинним розв’язком, якщо в кожній його точці задача Коші має єдиний розв’язок.
Означення 5.7.
Розв’язок називається особливим розв’язком, якщо в кожній його точці порушується єдинність розв’язку задачі Коші.
Аналогічно Д.Р., розв’язаним відносно , Д.Р. (5.1) може мати розв’язки, які являються ні частинними, ні особливими.
Аналіз частинних і особливих розв’язків для цих рівнянь більш складний. Зауважимо, що в випадку (5.3) розв’язок буде особливим, якщо буде особливим хоча б для одного з Д.Р. (5.3).
Приклад 5.1.
(5.9)
З (5.9) маємо:
Тоді - загальний інтеграл.
або . Цей загальний інтеграл є накладенням сімейств двох (мал. 5.1).
Розв’язок задачі Коші для Д.Р. (5.9) в кожній точці площіни являється єдиним. В точці ми маємо два напрямки поля:; І через цю точку проходить два
, якщо (5.11)
і , якщо .
Розв’язки (10),(11) – частинні розв’язки. Особливих розв’язків немає.
2. Знаходження кривих, підозрілих на особливий розв’язок.
Припустимо, що Д.Р. (5.1) представлено в формі (5.3). При досліджені на особливий розв’язок рівнянь виду (5.3) ми прийшли до висновку, що ці розв’язки можливі на тих кривих, на яких являється необмеженою. Але в переході від Д.Р. (5.1) до рівнянь (5.3) є недоцільність при визначені особливих розв’язків, так як .
Дійсно, припустимо, що _____ похідні , тоді
, звідки (5.12).
Припустимо, що , тоді буде необмеженою при умові
(5.13)
Таким чином, криві, підозрілі на особливий розв’язок будуть визначатися з системи
(5.14)
Розв’язок системи (5.14)
=0 (5.15)
дискримінантна крива. Якщо вона задовільняє Д.Р. (5.1) і в кожній точці порушується єдність, то це буде особливий розв’язок.
Приклад 5.2.
(5.16)
, (5.17)
Співвідношення (5ю17) – дискримінантна крива рівняння (5.16). А на ній ми маємо не два а один напрямок поля . В той же час – через неї може проходити не одна .
5.3. Загальний метод введення параметра.
Розглянемо Д.Р. (5.1). Припустимо, що воно допускає параметризацію
(5.18)
Так, що при всіх значеннях параметрів і .
Використовуючи (5.18) і співвідношення ми з Д.Р. (5.1) завжди зможемо привести до Д.Р., яке розв'язане Відносно похідної.
Тому
Візьмемо, наприклад, за незалежну змінну, – за залежну, тоді прийдемо до Д.Р.
(5.19)
Якщо
(5.20)
– загальний розв'язок Д.Р. (5.19), то загальний розв'язок Д.Р. (5.1) можна отримати в параметричній формі.
(5.21)
Розглянемо деякі частинні випадки:
А. Д.Р., розв'язані віднлсносно шуканої функції.
Це рівняння має вигляд
(5.22)
За параметри і можна взяти і . Позначимо , тоді
enter;"> (5.23)
Маємо
Звідки
(5.24)
Нехай – загальний розв'язок Д.Р. (5.24), тоді – загальний розв'язок Д.Р. (5.22).
Д.Р. (5.24) може мати особливий розв'язок , тоді Д.Р. (5.22) може мати особливий розв'язок .
Б. Випадок, коли Д.Р. розв'язане відносно незалежної змінної.
Це рівняння має вигляд
(5.25)
Інтегрується воно аналогічно Д.Р. (5.22). Покладемо . Тоді
Використовуючи співвідношення , отримаємо
(5.26)
Якщо – загальний інтеграл Д.Р. (5.26), то
(5.27)
загальний інтеграл Д.Р. (5.25).
Якщо – особливий рощзв'язок Д.Р.(5.26), то -може бути особливим розв'язком Д.Р. (5.25).
Розглянемо тепер більш прості випадки, коли рівняння можна проінтегрувати.
В. Рівняння Лагранжа.
Це рівняння має вигляд
(5.28)
Воно інтегрується в квадратурах. Покладемо . Тоді
(5.29)
З (5.29) маємо
(5.30)
Д.Р. (5.30) лінійне по
(5.31)
Нехай – розв'язок Д.Р. (5.31). Тоді загальний розв'язок рівняння Лагранжа запишемо в параметричній формі
(5.32)
Особливі розв'язки можуть бути там, де
(5.33)
тобто
(5.34),
де – корені рівняння (5.33).Розв'язок (5.34) може бути частинним або особливим.
Г. Рівняння Клеро.
Це рівняння – частинний випадок рівняння Лагранжа, коли .
(5.35)
Покладемо , тоді
(5.36)
Використовуючи , отримаємо
(5.37)
Рівняння (5.37) розпадається на два
(5.38)
Перше рівняння дає , підставляючи яке в (5.35) будемо мати загальний розав’язок
(5.39)
Друге - , разом з (5.35) утворює параметричні розв’язкі
(5.40)
Розв’язок (5.40) являється особливим, так як він співпадає з _______. Дійсно
звідки
(5.41)
Дискримінантна крива (3.41) співпадає з розв’язком (3.40).
Приклад 5.3.
Розв’язати рівняння Лагранжа.
Покладемо . Маємо ,
,
Отримали лінійне рівняння
Його розв’язок
(5.42)
(5.43)
загальний розв’язок нашого рівняння в параметричній формі. Або, виключаючи :
(5.44)
Знайдемо ті розв’язки, яким відповідають
Перший розв’язок – офівфісобливий, другий – частинний.
Приклад 5.4.
Це рівняння Клеро. Його загальний розв’язок –
Запишемо дискримінантну криву
Звідки - особливий розв’язок, так як через цей розв’язок проходить ще розв’язок, який міститься в загальному при .
4. Неповні рівняння.
а). Д.Р. які містять тільки похідну.
Це рівняння вигляду
(5.45)
Рівняння (5.45) може мати скінчену або нескінчену кількість дійсних розв’язків.
(5.46)
де – деякі числа, задовільняючі функцію .
Інтегруємо (5.46)
(5.47)
Так як то
(5.48)
загальний інтеграл Д.Р. (5.45). Таким чином при таких припущеннях Д.Р. (5.45) є системою прямих ліній, які можна записати у вигляді (5.48). При цьому в (5.48) можуть входити комплексні розв’язки Д.Р.
Приклад 5.5.
Розв’язати .
Згідно (5.48) – загальний інтеграл. Однак у нього крім дійсного розв’язку , входять розв’язки комплексного Д.Р.
б) Д.Р., які не містять шуканої функції
мають вигляд
(5.49)
Якщо (5.49) можна розв’язати відносно похідної
(5.50)
то
(5.51)
являється загальним інтегралом Д.Р. (5.49).
Якщо ж розв’язати відносно не можна, а допускається параметризація
(5.52)
тобто
(5.53)
Тоді загальний розв’язок знаходять в параметричній формі
(5.54)
Якщо Д.Р. (5.49) має вигляд
(5.55)
тоді це рівняння легко параметризується .В частинному випадку . Загальний розв’язок запишеться в формі
(5.56)
Приклад 5.6.
Зайти загальний розв’язок рівняння .
Вводимо параметризацію .
, ,
Маємо
Загальний розв’язок в параметричній формі.
в) Д.Р., які не містятьнезалежної змінної.
Це рівняння вигляду
(5.57)
Якщо рівняння (5.57) розв’язане відносно , тобто
(5.58)
то
(5.59)
Являється загальним інтегралом Д.Р. (5.57). Особливими розв’язками можуть бути криві , де – корені рівняння (або ).
Якщо Д.Р. (5.57) не можна розв’язати відносно , але воно допускає параметризацію
(5.60)
то
(5.61)
Загальний розв’язок Д.Р. (5.57) в параметричній формі.
Приклад 5.7.
Розв’язати . Введемо параметризацію .
звідки
зашальний розв’язок нашого рівняння.
г) Узагальнено однорідні рівняння.
Д.Р. назвемо узагальнено однорідним, якщо ліва частина являється однорідною функцією аргументів , яким відповідають величини -го, -го і виміру, тобто
(5.62)
Зробимо заміну
(5.63)
де – нова незалежна змінна, – нова шукана функція. Маємо
тобто . З іншої сторони
(5.64)
Підставимо (5.63),(5.64) в Д.Р. (5.1)
отримане рівняння
(5.65)
не містить незалежної змінної .