РефератыОстальные рефератыВсВспененный углеродосодержащий компо

Вспененный углеродосодержащий компо

Реферат


Вспененный углеродосодержащий компо-


зиционный материал


Изобретение относится к производству легких пористых теплоизоляционных и огнеупорных материалов.


Предлагаемые материалы могут найти широкое применение в металлургии, теплоэнергетике, строительной промышленности для теплозащиты различных агрегатов, установок и конструкций в широком диапазоне температур, вплоть до 1400-1600 о
С.


Для улучшения эксплуатационных характеристик (механические и теплофизические свойства) в состав материала, включающего минеральный наполнитель (кварцевый песок, глина, алюмосиликаты и др.), жидкое стекло с плотностью 1,45 г/см3
и модулем 2,8 и порошок кристаллического кремния с размером частиц < 63 мкм, дополнительно вводят углеродсодержащее вещество природного происхождения – шунгит и антиоксидант - восстановитель - высокодисперсный порошок алюминия марки АСД-1 в соотношении по массе шунгит:алюминий = 1,3¸1,5. Материал получают сначала по технологии «холодного» вспучивания при комнатной температуре, а затем отжигают в режиме СВС-горения при температурах 1400-1600 о
С, придавая ему свойства легких огнеупоров с уровнем теплопроводности 0,07-0,16 Вт/м×К для материалов плотностью 250-600 кг/м3
и механической прочности на сжатие в пределах 6,4¸25,3 Мпа.


МКИ 6 С 04В 35/52, 35/83
Вспененный углеродсодержащий композиционный материал

Изобретение относится к производству легких пористых теплоизоляционных и огнеупорных материалов, способных удовлетворить требования эффективной теплозащиты различных тепловых установок и агрегатов в энергетике, металлургии, стройиндустрии и многих других отраслях промышленности, а также обеспечить надежную теплоизоляцию конструкций или их узлов в авиационно-космической технике, авто- и судостроении.


Повышение стойкости, то есть увеличение ресурса службы любых огнеупоров в различных условиях их эксплуатации является главным требованием, которое предъявляется сегодня к разработчикам новых материалов этого класса.


Одним из наиболее распространенных в мировой практике технологических приемов, позволяющих существенно повысить термостойкость, износостойкость, коррозионную стойкость и механические характеристики огнеупоров является введение в исходные шихтовые композиции углеродных ингредиентов в виде углеродсодержащих связок, сажи, кокса, графита и др. (см. Кашеев И.Д. Оксидно-углеродистые огнеупоры, М, Интернет Инжиниринг, 2000).


Наряду с указанными положительными факторами введение углерода в состав огнеупоров влечет за собой появление проблемы выгорания углерода из поверхностных рабочих слоев огнеупорных материалов (футеровки, обмазки, покрытия) в окислительной среде при высоких температурах (свыше 500о
С).


Как показал опыт, наиболее эффективным средством борьбы с этим негативным явлением служит одновременное с углеродом введение в состав огнеупоров функциональных добавок – антиоксидантов, в роли которых могут выступать металлы, имеющие максимальное химическое сродство к кислороду. К разряду особо эффективных антиоксидантов относятся Al, Mg, Si и некоторые другие элементы.


Введение таких добавок в состав огнеупорного материала резко уменьшает выгорание углерода при высоких температурах вследствие более активного их взаимодействия с кислородом окружающей среды в интервале температур выгорания углерода с образованием тугоплавких оксидов (Al2
O3
, MgO, SiO2
и т.д.), способствующих при дальнейшем повышением температуры дополнительному уплотнению структуры огнеупоров.


Все эти технологические разработки проведены главным образом, для повышения износостойкости высокоплавких огнеупоров.


Однако, аналогичные проблемы стоят и перед разработчиками легких пористых теплоизоляционных и теплозащитных материалов.


Известен способ получения пористых теплоизоляционных материалов на основе углерода за счет введения в состав исходных компонентов порообразующих веществ, в частности из клшасса хлоридов металлов (Заявка Японии №59141410, кл. С01В 31/02, 1984).


Согласно этому способу порошкообразный графит смешивают со связующим (синтетической смолой или нефтяным пеком) и порошком NaCl. Полученную смесь формуют и после коксования при высокой температуре подвергают выщелачиванию, при котором соль растворяется, освобождая поры.


Недостатком способа является изотропность материала, обладающего довольно высокой теплопроводностью из-за переизлучения тепла в порах, а также из-за хорошей теплопроводности графита. Как известно, интенсивность теплового потока за счет переизлучения (стефановский поток) пропорциональна четвертой степени абсолютной температуры Тр


I=sТр
4


и, следовательно, с увеличением температуры резко возрастает. Чтобы избежать этого эффекта, необходимо в углеродную матрицу вводить экранирующие элементы в виде поперечных тепловому потоку волокон.


Известен теплоизоляционный вспененный углеродный композиционный материал УКМ (патент US, №4442165, кл. 428-3077, 1984), включающий пиролизованную матрицу из смеси термореактивной смеси и углеродных волокон, покрытых пиролитическим графитом. Существенным недостатком данного материала является сложность технологического процесса и высокая трудоемкость изготовления теплоизоляционного вспененного УКМ, а также недостаточно высокая механическая прочность.


В настоящее время перед разработчиками углеродсодержащих теплоизоляционных материалов стоит задача создания простых технологических приемов, позволяющих при минимальном уровне энерго и трудозатрат получать легкие пористые материалы с низкой теплопроводностью и достаточно высокими механическими характеристиками.


Наиболее близким (прототип)техническим решением к заявленному изобретению является способ получения высокопористых гранул для выплавки кремния (патент RU №2042721, кл С22В5/02, С01В 33/02, 1992), в котором используется шихта, состава, мас.%











кристаллический кремний


1-6


жидкое стекло


12-20


стехиометрическая смесь кремнеземсодержащего материала и углеродистого восстановителя


74-87



В качестве кремнеземсодержащего материала использовался кварцевый песок с содержанием SiO2
98% по массе, а углеродистый восстановитель представлял собой смесь древесного угля с нефтяным коксом в массовом соотношении 1:1 с содержанием твердого углерода 78,5% масс.


Физико-химическую основу этого способа составляют гетерогенные реакции взаимодействия кристаллического кремния со щелочной средой, в роли которой выступает жидкое стекло. Химические реакции взаимодействия могут развиваться по различным схемам:


Si(тв)+2NaOH(р-р)+H2
O(ж)=Na2
O×SiO2
(тв)+2H2
(г) (1)


Si(тв)+Na2
O×SiO2
(р-р)+2H2
O(ж)=Na2
O×SiO2
(тв)+2H2
(г) (2)


Эти реакции имеют ярко выраженный экзотермический характер и поэтому идут с самоускорением и с экспоненциальным подъемом температуры реакционной системы вплоть до 100о
С. Эта температура соответствует точке кипения воды, содержащейся в жидком стекле. При достижении температуры кипения воды происходит выделение пара, который в сочетании с водородом (реакции 1 или 2) вспенивает всю реагирующую массу с одновременным порообразованием и отверждением вспененной массы. Поскольку процесс кипения является эндотермическим, то повышение температуры реагирующей системы сверх 100о
С не может произойти до полного выкипания воды и полного отверждения вспененной массы.


В предлагаемом изобретении заслуживает внимания лишь сама идея использовать экзотермический характер взаимодействия газообразователя – кристаллического кремния с водным щелочным раствором – жидким стеклом для получения вспененной углеродсодержащей массы. Однако оно имеет целый ряд принципиальных недостатков. Во-первых, вспучивание реакционной системы осуществляется при темпе6ратурах 50-200о
С, а не при комнатной, что существенно усложняет технологический цикл образования легких пористых материалов. Во-вторых, нельзя считать удачным выбор компонентного состава шихты, особенно углеродных ингридиентов, который принципиально не может обеспечить низкую теплопроводность и высокие механические характеристики. Это связано с тем, что целью изобретения было не создание теплоизоляционного материала, а мелких пористых гранул для выплавки кремния. Представленные в описании значения механической прочности (0,6-1,2Мпа) завышены в силу влияния масштабного эффекта. Мелкие гранулы (масса гранул 5-20г) разрушатся при более высоких давлениях, чем стандартных размеров образцы из этого же материала.


И, наконец, предлагаемый углеродсодержащий материал обладает довольно низким электрическим сопротивлением (120-240 Ом·см при 1400о
С), т.е.относится к классу электропроводящих за счет высокого массового содержания углеродной фазы. Задачей предлагаемого изобретения является разработка легкого пористого углеродсодержащего композиционного материала путем вспенивания и отверждения при комнатной температуре, сокращение технологического процесса получения пористого материала низкой объемной массы с повышенными физико-механическими и эксплуатационными характеристиками в широком диапазоне температур.


Поставленная задача решается тем, что для получения экзотермической, способной в вспучиванию при комнатной температуре, смеси первоначально приготовляют по отдельности сухую и жидкую составляющие смеси в соотношении Тв/ж=1-1,5, затем в жидкое связующее - жидкое стекло (ЖС) плотностью 1,45 г/см3
и модулем 2,8 вводят газообразователь - кристаллический кремний - с размером частиц менее 100 мкм в соотношении ЖС/Si=(3-6):1 и вслед за этим производят окончательное смешение жидкого связующего и сухих компонентов, в состав которых входит углеродсодержащее природное вещество – шунгит с массовым содержанием углерода около 30%.


Окончательные физико-механические и эксплуатационные свойства вспученный и отвержденный материал приобретает после отжига в режиме самораспространяющегося высокотемпературного синтеза (СВС) в электропечах типа СНОЛ по определенной программе после достижения порога инициирования СВС в интервале температур 650-850о
С.


Полный технологический цикл создания вспученного композиционного материала состоит из следующих стадий.


Первоначальной стадией создания материала с нужными свойствами является целенаправленный выбор компонентного состава шихты, состоящей из высокодисперсных сухих порошков различной физико-химической природы. Для получения легкого пористого материала с заявленными свойствами в качестве основных компонентов шихты использовались, мас. %











Минеральный наполнитель


56-65


Углеродсодержащий материал


21-25


Порошок алюминия марки АСД-1


14-19



Выбор минеральных компонентов весьма широк и включает в себя природные вещества (кварцевый песок, глина, кварцит, перлит, вермикуллит), строительные материалы (шамот, динас, цемент и т.п.)и промышленные отходы (зола-унос, шлаки).


Главным требованием при выборе минерального сырья служит обязательное содержание в нем диоксида кремния (SiO2
). При выборе углеродсодержащего компонента предпочтение было отдано шунгиту, который представляет собой природную углеродсиликатную композицию, в которой углеродная и минеральная фаза равномерно распределены по объему. Физико-механические характеристики шунгитовых пород определяются соотношением и структурой шунгитового углерода и силикатного компонента, прочностью и развитием межфазного взаимодействия.


В предлагаемом изобретении был использован шунгит, в состав которого входит 57,2% SiO2
, 28,6% углерода, остальное окислы – Al2
O3
, MgO, TiO2
, Fe2
O3
, K2
O. Отношение минеральной и углеродной фаз составляет 3,6. Для шунгитовых пород подобного типа (30мас.% углерода) характерны следующие свойства:














Плотность


2310кг/м3


Пористость (после термообработки в диапазоне 20-380о
С)


18,8%


Прочность на сжатие


155МПа


Твердость по шкале Мооса


4,5ед.



По сравнению с графитовыми материалами шунгитовые породы обладают существенно более высокими значениями модулей Юнга, сдвига и всестороннего сжатия, что предопределяет их большую прочность в условиях сложного нагружения т.е. шунгит выполняет роль упрочняющей добавки. Помимо улучшения прочностных характеристик использование шунгита в качестве углеродсодержащего компонента улучшает коррозионную стойкость материала, особенно в условиях воздействия соляной и серной кислоты.


Введение в шихту добавки высокодисперсного порошка алюминия, в роли которого была выбрана пудра марки АСД-1 с удельной поверхностью 177,2см2
/г (эффективный размер частиц 91,5 мкм), преследует двойную цель: во-первых добавка Al снижает окисление углерода в поверхностных слоях материала при эксплуатации его в окислительной среде при температуре более 500о
С, т.е. добавка Al играет роль антиоксиданта, и во-вторых, при обжиге вспененного отвержденного материала в режиме СВС алюминиевый порошок выполняет роль активного восстановителя.


Выбранные компоненты шихты загружаются в смеситель в указанных соотношениях и подвергаются перемешиванию в течении 15-20 мин.


Полученную смесь затворяют натриевым жидким стеклом (ЖС) и жидковязкую массу шликера разливают в специальные разборные формы, которые перфорированы по боковым поверхностям для выхода влаги в процессе вспучивания и отверждения. Форма имеет также ограничительную съемную перфорированную крышку для предотвращения выхода вспененной массы наружу при высоких значениях коэффициента вспучивания.


Газообразователь – порошок кристаллического кремния может быть внесен в реагирующую систему по двум вариантам. Для уменьшения времени вспенивания минеральной массы и её отверждения кремний вводят в ЖС до затворения шихты, если в этом нет необходимости Si вводят одновременно с шихтой, что приводит к затягиванию процесса вспучивания (см. табл1).


В предлагаемом варианте создания вспученного углеродсодержащего композиционного материала в качестве газообразователя использовался кристаллический кремний марки КР-00, который состоит из 98,5-99мас%Si, 0,3%Fe, 0,2%Al и0,25%Cа. Кремний подвергался измельчению в вибромельнице до дисперсности менее 100мкм. Поскольку реакция взаимодействия кремния со щелочной средой носит гетерогенный характер, то размер частиц Si, на поверхности которых и развивается реакция, играет очень большую роль в процессе газообразования и тепловыделения в реагирующей системе. Влияние размера частиц кремния на характеристики процесса вспучивания приводится в табл2. Введение тонкодисперсного порошка кристаллического кремния приводит к более сильному вспениванию шихтовой смеси, чем грубодисперсного, в связи с выделением большого объема водорода и водяного пара. При введении тонкодисперсного порошка кремния материал имеет, как правило, мелкопористую структуру, а при грубодисперсном – ноздреватую.


Помимо самого размера частиц кремния огромную роль в реакциях взаимодействия со щелочной средой играет механическая активация их поверхности, которое достигается в процессе измельчения. Наибольшую активность проявляют свежеприготовленные порошки кремния.


Многолетняя практика работы с порошками кремния позволяет сделать вывод, что долгое хранение порошков кремния без их герметизации на воздухе в естественных условиях воздействия кислорода и влажности окружающей среды приводит к образованию на поверхности частиц кремния тонкой пленки SiO2
, и полной потере способности порошка к газообразованию.


Согласно литературным данным (см.Low J.T. Francis E.E.J.Phys.Chem.,.,60,№3.p353-358,1956) при 300о
К окисная пленка кремния толщиной 24о
А образуется всего за 1 час.


После завершения процесса вспучивания за счет выделения водорода (реакции 1-2) и испарения несвязанной воды, находящейся в ЖСБ, и полного отверждения высокопористой массы производят разборку формы и полученное изделие помещают в термошкаф для контрольной сушки на 1-2 часа при температуре 120-150°С. Потеря веса изделия в процессе сушки не превышает, как правило, 5%.


Теплоизоляционные материалы в зависимости от их предназначения (условий эксплуатации) производятся либо в виде готовых формованных изделий (кирпич, блок, плита, брус, скорлупа), либо используются для создания теплоизоляционной или тепловой защиты непосредственно на производственном объекте с применением опалубки.


Пример1


Изготавливали изделие в виде кирпича стандартных размеров 230х115х65мм. В качестве минерального наполнителя использовался кварцевый песок марки С-070-1 с содержанием 99,3 масс % SiO2
Для изготовления шихты отбирали фракцию <63 мкм, которую затем смешивали с алюминиевой пудрой марки АСД-1 и порошком шунгита, содержащего 30% по массе твердого углерода и с размером частиц 100-250 мкм в течении 20-30 мин в смесителе планетарного типа. Для затворения шихты использовались натриевое жидкое стекло, соответствующее ГОСТ 13078-81 с плотностью 1,45 г/см3, модулем 2,8 и составом 29,6 мас. % SiO2
, 10,6 мас. %Na2
O, остальное вода. В качестве газообразователя применялся порошок кристаллического кремния марки КР-00 с размером частиц <63 мкм. Перед совмещением кремния с ЖС его подвергали механической октивации

в специальных мельницах.


Результаты испытаний изделий из вспененного углеродсодержащего композиционного материала представлены в табл3.


Полученные свойства испытанных рецептур составов теплоизоляционного материала показали, что ограничительным содержанием компонентов является первая рецептура, так как в этом случае саморазогрев и увеличение объема находятся на очень низком уровне (разогрев системы составляет всего 30-40°С в течении 3-4 часов.


Состав седьмой рецептуры является также запредельным, поскольку при большом содержании кремния образуется не пористая, а ноздреватая, с большими (до 10мм) дырками и очень тонкими перегородками масса, обладающая низкими механическими характеристиками.


Включение в состав материала углеродсодержащий фазы с высокой тепло и электропроводностью в этих композициях не сказывается на эффективные характеристики материала, поскольку частицы этой фазы изолированы друг от друга и по причине высокой пористости (поры обладают высоким тепло и электросопротивлением) и в силу умеренного содержания (21-25%) углеродсодержащей фазы в материале, исключающего прямой контакт между частицами и образование сквозных проводящих мостиков.


Анализ теплофизических свойств заявленного материала показывает, что по уровню теплоизоляции, он не уступает волокнистым материалам, а по простоте технологии его создания значительно их превосходит.


Пример2


Способность предлагаемого материала создавать высокопористую и быстро затвердевающую теплоизоляционную массу при комнатной температуре без предварительного подогрева привлекает к себе особое внимание специалистов по теплозащите различных тепловых установок, в том числе и в теплоэнергетике. Рецептуры составов, имеющих после отверждения плотность 250-600 кг/м3
, находят широкое применение при ремонте футеровых котлов типа ДЕ, НВТМ, ДКВР. На примере ремонта трубчатого теплового котла ДЕ-25, где для заливки в зазоры между трубами был использован вспененный материал, близкий к рецептурам 4 и 5 в табл. 3, а заливку межтрубного расстояния производили материалом, сходным с рецептурой 2, была продемонстрирована эффективность предлагаемого материала (повышение КПД котла на 2 %, сокращение удельного расхода топлива).


Предложенный материал пригоден для теплозащиты многих тепловых агрегатов в металлургии (теплоизоляция желобов, ковшей, миксеров и др.) взамен легких шамотных материалов.


Для того, чтобы перевести теплоизоляционный вспененный углеродсодержащий композиционный материал в разряд легких огнеупоров, его подвергают обжигу в режиме СВС. Поставленная цель достигается ступенчатым нагревом до порога воспламенения реагирующей системы по определенной программе в специальных электропечах в среде аргона. Общее время нагрева до момента инициирования СВС находится в пределах 65-120 мин. При температуре инициирования 650-850 о
С.


Процесс высокотемпературного синтеза в реагирующей системе протекает в реакционной зоне волны горения, которая распространяется от точки инициирования в образце по всему объёму. Температурный режим нагрева образца и СВС-процесса контролируется с помощью термопар, одна из которых (ХА-термопара) помещается вблизи образца, а другая (ВР-термопара) заделывается в массу образца на глубину 5 мм. Регистрация температуры, замеренной термопарами, осуществляется с помощью милливольтметра и самописца типа КСП-4. Момент инициирования СВС определяется по термограммам появлением на них пика температуры, высота которого соответствует максимально достигаемой температуре в волне горения. Измеренные таким образом температуры для предлагаемых рецептур находятся на уровне 1400-1600о
С. Надо заметить, что присутствие в составе шунгита, различных оксидов металлов (TiO2
, Fe2
O3
и др.) приводит к заметному (до 200о
С) увеличению температуры горения по сравнению с системой SiO2
-Al за счет более высокого уровня экзотермичности реакций восстановления металлов из оксидов, общая схема которых выглядит следующим образом:


R1
+R2
+Me(Al,Mg)=P1
+P2
+Q,


где R1
=TiO2
, Fe2
O3
, SiO2
и др.


R2
=С,Si и др.


P1
=Al2
O3
, MgO


P2
=карбиды, силициды восстановленных из окислов элементов


Q=тепловой эффект реакции.


Эту схему можно проиллюстрировать на примере предлагаемых рецептур, в которых в качестве восстановителей выступают Al и С, а в качестве окислителей – оксиды : SiO2
, TiO2
, Fe2
O3
и др.


Получение SiC, Al2
O3
×SiO2
, Al4
Si3
и других тугоплавких соединений в реакционной смеси SiO2
+Al+C может происходить по схеме:


а) стадия восстановления


3SiO2
+4Al=2Al2
O3
+3Si+620 кДж (3)


б) стадия синтеза


3Si+3C=SiC+345 кДж (4)


Суммарная схема реакций в волне СВС имеет вид:


3SiO2
+4Al+3C=2Al2
O3
+3SiC+965 кДж (5)


Параллельно с этими реакциями в волне СВС протекают реакции образования кианита (Al2
O3
·SiO2
) и силицида алюминия с выделением тепла:


Al2
O3
+SiO2
+3Si+4Al=Al2
O3
·SiO2
+Al4
Si3
(6)


В свою очередь весь оставшийся после взаимодействия по реакциям (3) и (6) алюминий образует карбид:


4Al+3C=Al4
C3
(7)


Организованная при отверждении вспученная высокопористая структура образцов из предлагаемого углеродсодержащего материала, как показывают исследования, не изменяется в процессе обжига в режиме СВС. Однако, этот технологический прием позволяет создать в объеме пористого материала с фиксированной жесткой физической структурой новые химические (Al2
O3
, Al2
O3
·SiO2
,SiC,Al4
Si3
,Al4
C3
) и другие тугоплавкие соединения, обладающие более высокими механистическими и огнеупорными свойствами.


Полученные результаты показали, что после обжига образцов из предлагаемого материала в печах по СВС-технологии по сравнению с необожженными образцами той же плотности и пористости предел прочности на сжатие материала увеличивается в 1,5-2 раза в зависимости от исходной плотности материала, а верхний температурный предел применения возрастает на 100-200о
С. Характеристики материалов, подвергнутых обжигу по технологии СВС, с рецептурами 2-6 приведены в табл.4.


Формула изобретения.


1. Вспененный углерод содержащий композиционный материал, включающий в свой состав минеральный наполнитель, жидкое стекло и кремний, отличающийся тем

, что он дополнительно содержит углеродсодержащую породу – шунгит и антиоксидант – восстановитель, высокодисперстный порошок алюминия с массовым соотношением шунгит:алюминий =1,3-1,5.


2. Материал по п.1, отличающийся тем

, что он приобретает высокие теплоизоляционные свойства по технологии «холодного» вспучивания при комнатной температуре.


3. Материал по п.1 и 2, отличающийся тем

, что он приобретает свойства легкого огнеупора в результате его обжига в режиме СВС-процесса.


Таблица1






































Соотноше-ние тв/ж, мас.ч


1:1


3:2


Соотноше-ние жс/Si,мас.ч


2:1


6:1


t*
отв мин


К**
всп


r,кг/м3


tотвю мин


Квсп


r, кг/м3


Si вводится в ЖС до затвердения шихты


15


8,1


250


25


4,2


430


Si вводится в ЖС одновременно с шихтой


40


5,4


350


55


3,0


600


*tотв
– время отверждения вспученного материала в минутах


**Квсп
—коэффициент вспучивания – кратность увеличения объемомассы



Таблица2



































































Соотноше-ние тв/ж, мас.ч


1:1


1,2:1


1,5:1


Соотноше-ние ЖС/Si,мас.ч


3:1


Размер частиц, мКм


<63


63-100


100-160


<63


63-100


100-160


<63


63-100


100-160


Время отверждения, мин


10


25


40


10


30


60


15


30


120


Квсп


9,6


7,5


3,5


9,0


6,0


3,0


8,0


4,5


2,0


Пористость, %


89


76


62


81


74


60


75


64


54


Кажущаяся плотность, кг/м3


170


260


260


260


270


530


310


520


620



Таблица 3



















































































































































Компоненты


Состав, масс.ч


1


2


3


4


5


6


7


Шихта

SiO2


400


470


450


250


300


225


300


Шунгит


120


150


150


150


120


100


100


Алюминий, АСД-1


100


100


100


100


80


75


80


Связующее


Жидкое стекло (ЖС)


400


480


470


420


400


400


500


Кремний (Si)


65


80


80


70


80


130


250


Отношение


Шихта/связ в масс.г


1,55


1,50


1,49


1,19


1,25


1,0


0,96


Отношение ЖС/Si, в мас.ч


6,15


6,0


5,85


6,0


5,0


3,08


2,0


Свойства


Плотность, кг/м3


650


600


520


430


350


250


180


Коэффициент вспучивания


2,0


3,0


3,7


4,2


5,4


8,1


8,6


Пористость,%


51


60


63


71


75


81


92


Предел прочности на сжатие, МПс


16,2


13,0


9,6


6,4


5,1


3,8


0,6


Коэффициент теплопроводности при 20о
С, Вт/мК


0,20


0,18


0,15


0,11


0,09


0,08


0,07


Термостойкость,о
С


130


1250


1100


950


800


Температура применения, о
С


1400


1300


1200


1150


1050



Таблица4














































Свойства


Состав, №п/п

2


3


4


5


6


Плотность, кг/м3


610


530


430


350


250


Предел прочности на сжатие, Мпа


25,3


18,0


11,6


8,3


6,4


Коэффициент теплопроводности при 20о
С, Вт/мК


0,16


0,13


0,10


0,08


0,07


Термостойко-сть, о
С, не менее


1350


1300


1200


1000


850


Температура применения о
С, не менее


1600


1400


1350


1200


1000


Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Вспененный углеродосодержащий компо

Слов:3952
Символов:37200
Размер:72.66 Кб.