Детство и начальное образование
Альберт Эйнштейн родился 14 марта 1879 в старинном немецком городе Ульме, в Германии но через год семья переселилась в Мюнхен, где отец Альберта, Герман Эйнштейн, и дядя Якоб организовали небольшую компанию «Электротехническая фабрика Я. Эйнштейна и К°». Вначале дела компании, занимавшейся усовершенствованием приборов дугового освещения, электроизмерительной аппаратурой и генераторами постоянного тока, шли довольно успешно. Но в 90-х гг. 19 в., в связи с расширением строительства крупных электроцентралей и линий дальних электропередач, возник целый ряд мощных электротехнических фирм. Надеясь спасти компанию, братья Эйнштейны в 1894 перебрались в Милан, однако через два года, не выдержав конкуренции, компания прекратила свое существование.
Дядя Якоб уделял много времени маленькому племяннику. «Я помню, например, что теорема Пифагора была мне показана моим дядей еще до того, как в мои руки попала священная книжечка по геометрии», — так Эйнштейн в воспоминаниях, относящихся к 1945, говорил об учебнике евклидовой геометрии. Часто дядя задавал мальчику математические задачи, и тот «испытывал подлинное счастье, когда справлялся с ними».
Родители отдали Альберта сначала в католическую начальную школу, а затем в мюнхенскую классическую гимназию Луитпольда, известную как прогрессивное и весьма либеральное учебное заведение, но которую он так и не окончил, переехав вслед за семьей в Милан. И в школе, и в гимназии Альберт Эйнштейн приобрел не лучшую репутацию. Чтение научно-популярных книг породило у юного Эйнштейна, по его собственному выражению, «прямо-таки фантастическое свободомыслие». В своих воспоминаниях физик-теоретик Макс Борн писал: «Уже в ранние годы Эйнштейн показал неукротимую волю к независимости. Он ненавидел игру в солдаты, потому что это означало насилие». Позже А. Эйнштейн говорил, что людям, которым доставляет удовольствие маршировать под звуки марша, головной мозг достался зря, они вполне могли бы довольствоваться одним спинным.
Первый год в Швейцарии
В октябре 1895 шестнадцатилетний Альберт Эйнштейн пешком отправился из Милана в Цюрих, чтобы поступить в Федеральную высшую техническую школу — знаменитый Политехникум, для поступления в который не требовалось свидетельства об окончании средней школы. Блестяще сдав вступительные экзамены по математике, физике и химии, он, однако, с треском провалился по другим предметам. Ректор Политехникума, оценив незаурядные математические способности Эйнштейна, направил его для подготовки в кантональную школу в Аарау (в 20 милях к западу от Цюриха), которая в то время считалась одной из лучших в Щвейцарии. Год, проведенный в этой школе, которой руководил серьезный ученый и прекрасный педагог А. Таухшмид, оказался и очень полезным, и — по контрасту с казарменной обстановкой в Пруссии — приятным.
Учеба в Политехникуме
Выпускные экзамены в Аарау Альберт Эйнштейн сдал вполне успешно (кроме экзамена по французскому языку), что дало ему право на зачисление в Политехникум в Цюрихе. Кафедру физики там возглавлял профессор В. Г. Вебер, прекрасный лектор и талантливый экспериментатор, занимавшийся в основном вопросами электротехники. Поначалу он очень хорошо принял Эйнштейна, но в дальнейшем отношения между ними осложнились настолько, что после окончания учебы Эйнштейн некоторое время не мог устроиться на работу. В какой-то мере это объяснялось чисто научными причинами. Отличаясь консерватизмом взглядов на электромагнитные явления, Вебер не принимал теории Максвелла, представлений о поле и придерживался концепции дальнодействия. Его студенты узнавали прошлое физики, но не ее настоящее и, тем более, будущее. Эйнштейн же изучал труды Максвелла, был убежден в существовании всепроникающего эфира и размышлял о том, как на него действуют различные поля (в частности, магнитное ) и как можно экспериментально обнаружить движение относительно эфира. Он тогда не знал об опытах Майкельсона и независимо от него предложил свою интерференционную методику.
Но опыты, придуманные Альбертом Эйнштейном, со страстью работавшим в физическом практикуме, не имели шансов осуществиться. Преподаватели недолюбливали строптивого студента. «Вы умный малый, Эйнштейн, очень умный малый, но у вас есть большой недостаток — вы не терпите замечаний», — сказал ему как-то Вебер, и этим определялось многое.
Бюро патентов. Первые шаги к признанию
После окончания Политехникума (1900) молодой дипломированный преподаватель физики (Эйнштейну шел тогда двадцать второй год) жил в основном у родителей в Милане и два года не мог найти постоянной работы. Только в 1902 он получил наконец, по рекомендации друзей, место эксперта в федеральном Бюро патентов в Берне. Незадолго до этого Альберт Эйнштейн сменил гражданство и стал щвейцарским подданным. Через несколько месяцев после устройства на работу он женился на своей бывшей цюрихской однокурснице Милеве Марич, родом из Сербии, которая была на четыре года старше его. В Бюро патентов, которое Эйнштейн называл «светским монастырем», он проработал семь с лишним лет, считая эти годы самыми счастливыми в жизни. Должность «патентного служки» постоянно занимала его ум различными научными и техническими вопросами, но оставляла достаточно времени для самостоятельной творческой работы. Ее результаты к середине «счастливых бернских лет» составили содержание научных статей, которые изменили облик современной физики, принесли Эйнштейну мировую славу.
Броуновское движение
Первая из этих статей — «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории», вышедшая в 1905, — была посвящена теории броуновского движения. Это явление (непрерывное беспорядочное зигзагообразное движение частичек цветочной пыльцы в жидкости), открытое в 1827 английским ботаником Робертом Броуном, уже получило тогда статистическое объяснение, но теория Эйнштейна (который не знал предшествующих работ по броуновскому движению) имела законченную форму и открывала возможности количественных экспериментальных исследований. В 1908 эксперименты Ж. Б. Перрена полностью подтвердили теорию Эйнштейна, что сыграло важную роль для окончательного становления молекулярно-кинетических представлений.
Кванты и фотоэффект
В том же 1905 вышла и другая работа Эйнштейна — «Об одной эвристической точке зрения на возникновение и превращение света». За пять лет до этого Макс Планк показал, что спектральный состав излучения, испускаемого горячими телами, находит объяснение, если принять, что процесс излучения дискретен, то есть свет испускается не непрерывно, а дискретными порциями определенной энергии. Эйнштейн выдвинул предположение, что и поглощение света происходит теми же порциями и что вообще «однородный свет состоит из зерен энергии (световых квантов),... несущихся в пустом пространстве со скоростью света». Эта революционная идея позволила Эйнштейну объяснить законы фотоэффекта, в частности, факт существования «красной границы», то есть той минимальной частоты, ниже которой выбивания светом электронов из вещества вообще не происходит.
Идея квантов была применена Альбертом Эйнштейном и к объяснению других явлений, например, флуоресценции, фотоионизации, загадочных вариаций удельной теплоемкости твердых тел, которые не могла описать классическая теория.
Работы Эйнштейна, посвященные квантовой теории света, были удостоены в 1921 Нобелевской премии.
Частная (специальная) теория относительности
Наибольшую известность А. Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905, в статье «К электродинамике движущихся тел». Уже в юности Эйнштейн пытался понять, что увидел бы наблюдатель, если бы бросился со скоростью света вдогонку за световой волной. Теперь Эйнштейн решительно отверг концепцию эфира, что позволило рассматривать принцип равноправия всех инерциальных систем отсчета как универсальный, а не только ограниченный рамками механики.
Эйнштейн выдвинул удивительный и на первый взгляд парадоксальный постулат, что скорость света для всех наблюдателей, как бы они ни двигались, одинакова. Этот постулат (при выполнении некоторых дополнительных условий) приводит к полученным ранее Хендриком Лоренцом формулам для преобразований координат и времени при переходе из одной инерциальной системы отсчета в другую, движущуюся относительно первой. Но Лоренц рассматривал эти преобразования как вспомогательные, или фиктивные, не имеющие непосредственного отношения к реальному пространству и времени. Эйнштейн понял реальность этих преобразований, в частности, реальность относительности одновременности.
Таким образом, принцип относительности, установленный для механики еще Галилеем, был распространен на электродинамику и другие области физики. Это привело, в частности, к установлению важного универсального соотношения между массой М, энергией Е и импульсом Р: E2
= М2
c4
+ P2
с2
(где с — скорость света), которое можно назвать одной из теоретических предпосылок использования внутриядерной энергии.
Профессорская деятельность. Приглашение в Берлин. Общая теория относительности
В 1905 Альберту Эйнштейну было 26 лет, но его имя уже приобрело широкую известность. В 1909 он избран профессором Цюрихского университета, а через два года — Немецкого университета в Праге.
В 1912 Эйнштейн возвратился в Цюрих, где занял кафедру в Политехникуме, но уже в 1914 принял приглашение переехать на работу в Берлин в качестве профессора Берлинского университета и одновременно директора Института физики. Германское подданство Эйнштейна было восстановлено. К этому времени уже полным ходом шла работа над общей теорией относительности. В результате совместных усилий Эйнштейна и его бывшего студенческого товарища М. Гроссмана в 1912 появилась статья «Набросок обобщенной теории относительности», а окончательная формулировка теории датируется 1915. Эта теория, по мнению многих ученых, явилась самым значительным и самым красивым теоретическим построением за всю историю физики. Опираясь на всем известный факт, что «тяжелая» и «инертная» массы равны, удалось найти принципиально новый подход к решению проблемы, поставленной еще Исааком Ньютоном: каков механизм передачи гравитационного взаимодействия между телами и что является переносчиком этого взаимодействия.
Ответ, предложенный Эйнштейном, был ошеломляюще неожиданным: в роли такого посредника выступала сама «геометрия» пространства — времени. Любое массивное тело, по Эйнштейну, вызывает вокруг себя «искривление» пространства, то есть делает его геометрические свойства иными, чем в геометрии Евклида, и любое другое тело, движущееся в таком «искривленном» пространстве, испытывает воздействие первого тела.
Общая теория относительности привела к предсказанию эффектов, которые вскоре получили экспериментальное подтверждение. Она позволила также сформулировать принципиально новые модели, относящиеся ко всей Вселенной, в том числе и модели нестационарной (расширяющейся) Вселенной.
Эмиграция
Альберт Эйнштейн не без колебаний принял предложение переехать в Берлин. Но возможность общения с крупнейшими немецкими учеными, в числе которых был и Планк, привлекала его.
Политическая и нравственная атмосфера в Германии делалась все тягостнее, антисемитизм поднимал голову, и когда власть захватили фашисты, Эйнштейн в 1933 навсегда покинул Германию. Впоследствии в знак протеста против фашизма он отказался от германского подданства и вышел из состава Прусской и Баварской Академий наук. В берлинский период, кроме общей теории относительности, Эйнштейном была разработана статистика частиц целого спина, введено понятие вынужденного излучения, играющего важную роль в лазерной физике, предсказано (совместно с де Гаазом) явление возникновения вращательного импульса тел при их намагничивании и др. Однако, будучи одним из создателей квантовой теории, Эйнштейн не принял вероятностной интерпретации квантовой механики, полагая, что фундаментальная физическая теория не может быть статистической по своему характеру. Он нередко повторял, что «Бог не играет в кости» со Вселенной.
Переехав в США, Альберт Эйнштейн занял должность профессора физики в новом институте фундаментальных исследований в Принстоне (штат Нью-Джерси). Он продолжал заниматься вопросами космологии, а также усиленно искал пути построения единой теории поля, которая бы объединила гравитацию, электромагнетизм (а возможно, и остальное). И хотя реализовать эту программу ему не удалось, это не поколебало репутации Эйнштейна как одного из величайших естествоиспытателей всех времен.
В Принстоне Эйнштейн стал местной достопримечательностью. Его знали как физика с мировым именем, но для всех он был скромным, приветливым и несколько эксцентричным человеком, с которым можно было столкнуться прямо на улице. В часы досуга он любил музицировать. Начав учиться игре на скрипке в шесть лет, Эйнштейн продолжал играть всю жизнь, иногда в ансамбле с другими физи
Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952, которое он не принял.
Будучи последовательным сторонником сионизма, Альберт Эйнштейн приложил немало усилий к созданию Еврейского университета в Иерусалиме в 1925.
В умах многих людей имя Эйнштейна связано с атомной проблемой. Действительно, понимая, какой трагедией для человечества могло бы оказаться создание в фашистской Германии атомной бомбы, он в 1939 направил президенту США письмо, послужившее толчком для работ в этом направлении в Америке. Но уже в конце войны его отчаянные попытки удержать политиков и генералов от преступных и безумных действий оказались тщетными. Это было самой большой трагедией его жизни.
Альберт Эйнштейн
скончался 18 апреля 1955 в Принстоне, США, от аневризмы аорты.
Эйнштейн и рождение релятивистской физической картины мира.
Там, где многие физики, пользовавшиеся теоретическими представлениями об электронах,взаимодействующих с электромагнитным полем, не видели проблемы. А. Эйнштейн видел принципиальную методологическую трудность.
Теория Максвелла была логически и методологически неполна по меньшей мере в двухаспектах:
во-первых, она не совмещалась с фундаментальным принципом классической физики – принципомотносительности, её уравнения не были инвариантными[4]
относительно преобразований Галилея;
во – вторых, как выяснилось, полевая картина мира (или, как её обычно называют, электромагнитнаякартина мира) оказалось недостаточным в качестве концептуальной основы нового этапа развития физики, ибо не позволяла с единой точки зрения объединить всерассматриваемые в теории процессы.
Таким образом, вопреки широко распространённой точки зрения есть основания утверждать, что надежда построить соответствующий раздел физики на основеэлектромагнитной картины мира не была осуществлена, хотя представления о такой картине мира активно обсуждались.
Революция в физике, вызванная теорией Максвелла, всё же привела к рождению новойрелятивистской картины мира. Важная роль в её создании и последовательном развитии принадлежит А. Эйнштейну. Необходимость её создания диктовалосьтребованием обеспечить логическую согласованность теоретической системы, а также неодолимой силой опытных фактов. Недостающая внутренняя и внешняясогласованность теоретических представлений электродинамики в острой форме появилась с возникновением не устраненных физических парадоксов. Сегодня можнос уверенностью сказать, что их обнаружение явилось признаком кризиса физической картины мира и вместе с тем начавшейся революцией в физике.
Один из важных парадоксов состоит в следующем. Из очень общих представлений освойствах пространства и времени, казавшихся очевидными в рамках механической картины мира, непосредственно вытекали формулы преобразования координат отодной системы к другой, движущейся относительно первой (преобразования Галилея, непосредственно связанные с его принципом относительности).
Как выяснилось, уравнение Максвелла не были инвариантными относительно преобразований Галилея, то есть к электромагнитным процессам галилеевскийпринцип относительности оказался не применим. Из этого следовал вывод, что в эксперименте можно выявить скорость равномерного прямолинейного движениеобъекта относительно поля (эфира). Однако сопоставление этих теоретических следствий с экспериментальными данными обескураживал физиков: в одних опытах(например, в явлении абберации, то есть кажущиеся смещения наблюдаемых в телескоп звёзд из – за движения Земли) эфир следовала считать абсолютно неподвижным; вдругих (например, в опытах по изменению скорости света в движущейся воде) – результат был таков, как если бы эфир частично увлекался движением воды.
В формулировке А. Эйнштейна принцип относительности приобрёл более богатое физическое содержание: «Законы, по которым изменяются состояния физическихсистем, не зависят от того какой из двух координатных систем движущихся равномерно и прямолинейно относительно друг друга, отнесены эти изменениясостояния…».
А. Эйнштейн в первой публикации по основам специальной теории относительности онвводит понятие физического события
в качестве фундаментального элемента новой картины мира, замещающего образ материальной точки.
Во всех последующих работах Эйнштейн будет пользоваться идеализацией точечногопространственного – временного физического события
как элементарного объекта теории, представляющего в теоретических моделях физическую реальность.
Физическая картина мира Галилея – Ньютона, в которой мир отображён как множествоматериальных точек, движущихся в пространстве с течением времени, замещается в специальной теории относительности Эйнштейна картиной мира, представленноймножеством точечных пространственно – временных материальных событий. Глубокое единство материи движения, движения,пространство, времени получило здесь концентрированное выражение: на место образов вещей ставились образы материальных процессов.
Специальная теория относительности предполагает существование материальных полей иматериальных частиц, но изображает в теоретических моделях не частицы и поля непосредственно, а отношение между происходящими с ними событиями
. Всвязи с этим можно сказать, что смысл теории относительности, отражённый в её наименовании, состоит не в том, что некоторые физические величины меняютчисленное значение при переходе к другой системе отсчёта (такие величины были в классической механики), а скорее в том, что эта теория отражаетзакономерности отношений между событиями
.
Переход к новой картине мира сопровождался достаточно мучительным процессом исключенияиз теории фиктивных образов, в первую очередь понятие эфира с механическими свойствами.
Образ эфира, понимавшегося в соответствии с представлениями механической картинымира, был замещён образом полевых процессов, выраженным с помощью идеализационных событий. По убеждению А. Эйнштейна, и специальная, и общаятеория относительности основывается на полевых представлениях (поле и есть «эфир» в новом понимании).
Неклассическая наука
Подрыву классических представлений в естествознании способствовали некоторые идеи, которые зародились еще в середине XIX века, когда классическая наука находилась в зените славы. Среди этих первых неклассических идей, в первую очередь, следует отметить эволюционную теорию Ч. Дарвина. Как известно, в соответствии с этой теорией биологические процессы в природе протекают сложным, необратимым, зигзагообразным путем, который на индивидуальном уровне совершенно непредсказуем. Явно не вписывались в рамки классического детерминизма и первые попытки Дж. Максвелла и Л. Больцмана применить вероятностно-статистические методы к исследованию тепловых явлений. Г. Лоренц, А. Пуанкаре и Г. Минковский еще в конце XIX века начали развивать идеи релятивизма, подвергая критике устоявшиеся представления об абсолютном характере пространства и времени. Эти и другие революционные с точки зрения классической науки идеи привели в самом начале XX века к кризису естествознания, коренной переоценке ценностей, доставшихся от классического наследия.
Научная революция, ознаменовавшая переход к неклассическому этапу в истории естествознания, в первую очередь, связана с именами двух великих ученых XX века - М. Планком и А. Эйнштейном. Первый ввел в науку представление о квантах электромагнитного поля, но по истине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший специальную (1905) и общую (1916) теорию относительности.
Как мы помним из предыдущего раздела, в механике Ньютона существуют две абсолютные величины - пространство и время. Пространство неизменно и не связано с материей. Время - абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая координата - время. Эйнштейн, приступая к разработке своей теории, принял в качестве исходных два положения: скорость света в вакууме неизменна и одинакова во всех системах, движущихся прямолинейно и равномерно друг относительно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить.
Кроме того, он построил математическую теорию броуновского движения, разработал квантовую концепцию света, а за открытие фотоэффекта в 1921г. ему была присуждена Нобелевская премия, дал физическое истолкование геометрии Н. Н. Лобачевского (1792-1856).
Буквально в течение первой четверти века был полностью перестроен весь фундамент естествознания, который в целом остается достаточно прочным и в настоящее время.
Что же принципиально нового в понимании природы принесло с собой неклассическое естествознание?
1. Прежде всего, следует иметь в виду, что решающие шаги в становлении новых представлений были сделаны в области атомной и субатомной физики, где человек попал в совершенно новую познавательную ситуацию. Те понятия (положение в пространстве, скорость, сила, траектория движения и т.п.), которые с успехом работали при объяснении поведения макроскопических природных тел, оказались неадекватными и, следовательно, непригодными для отображения явлений микромира. И причина этого заключалась в том, что исследователь непосредственно имел дело не с микрообъектами самими по себе, как он к этому привык в рамках представлений классической науки, а лишь с "проекциями" микрообъектов на макроскопические "приборы". В связи с этим в теоретический аппарат естествознания были введены понятия, которые не являются наблюдаемыми в эксперименте величинами, а лишь позволяют определить вероятность того, что соответствующие наблюдаемые величины будут иметь те или иные значения в тех или иных ситуациях. Более того, эти ненаблюдаемые теоретические объекты (например, y - функция Шредингера в квантовой механике или кварки в современной теории адронов) становятся ядром естественнонаучных представлений, именно для них записываются базовые соотношения теории.
2. Второй особенностью неклассического естествознания является преобладание же упомянутого вероятностно-статистического подхода к природным явлениям и объектам, что фактически означает отказ от концепции детерминизма. Переход к статистическому описанию движения индивидуальных микрообъектов было, наверное, самым драматичным моментом в истории науки, ибо даже основоположники новой физики так и не смогли смириться с онтологической природой такого описания ("Бог не играет в кости", - говорил А. Эйнштейн), считая его лишь временным, промежуточным этапом естествознания.
3. Далеко за рамки естествознания вышла сформулированная Н. Бором и ставшая основой в неклассической физике идея дополнительности. В соответствии с этим принципом, получение экспериментальной информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координаты и импульсы, кинетическая и потенциальная энергия, напряженность электромагнитного поля и число фотонов и т.п. Таким образом, с точки зрения неклассического естествознания невозможно не только однозначное, но и всеобъемлющее предсказание поведения всех физических параметров, характеризующих динамику микрообъектов.
4. Для неклассического естествознания характерно объединение противоположных классических понятий и категорий. Например, в современной науке идеи непрерывности и дискретности уже не являются взаимоисключающими, а могут быть применены к одному и тому же объекту, в частности, к физическому полю или к микрочастице (корпускулярно-волновой дуализм). Другим примером может служить относительность одновременности: события, одновременные в одной системе отсчета, оказываются неодновременными в другой системе отсчета, движущейся относительно первой.
5. Произошла в неклассической науке и переоценка роли опыта и теоретического мышления в движении к новым результатам. Прежде всего, была зафиксирована и осознана парадоксальность новых решений с точки зрения "здравого смысла". В классической науке такого резкого расхождения науки со здравым смыслом не было. Основным средством движения к новому знанию стало не его построение снизу, отталкиваясь от фактической, эмпирической стороны дела, а сверху. Явное предпочтение методу математической гипотезы, усложнение математической символики все чаще стали выступать средствами создания новых теоретических конструкций, связь которых с опытом оказывается не прямой и не тривиальной.