. .
(dimstein@list.ru)
, .
, 2007 .
.
- ,
- .
-
! !
! ! .
"
! ! ,
# $$#
!.
%
& ,
! ,
! & .
1.
!
" # # . $ # -
, – # .
% , # # & & –
’ . ( ( # &# & & ) # . )
# , ’ # .
& # #
, ’ # &. * ’
’ # # ,
- ,
. *
& #&# # # & & –
& & – # !" # "
(# ) . +# # #
& #, #
’ # # # .
( #
(’ # - , # ). ( & # & #
# & & – ’ . ,# , & , ’ # #. ) # , #
’ ,
# #.
* # #
( ! ( ’ # ), #
’ . $ ’
# & #
.
2.
# &#
( ! , & ’ . )
– - -%
"& - [14]. * ’
&# # # & & & & , # &:
# #, # # ( , #).
, - -%
, 24 .
# # &# , # # . * # # |
||
& . % ( ! # |
||
- ( ). |
" |
|
. # , |
# |
|
, ’ , (−,+,+,+). |
, # # |
|
% # & ! # . |
# # |
|
A) * - ’ . |
||
B) / # - ’ # . |
# |
|
C) * # - # #. |
#, # |
|
* A ’ |
- |
|
, & |
, B |
|
# ’ . ) |
, $ |
|
( ! , |
! |
# , - -% . ( #" ,
# ’ . * . # # ,
# .
. 0 - ,
’ , , & , # # #
(Ωα⋅µν=Ωα⋅[µν]):
(1) Ωα
⋅
µν=∆α
µ
ν−∆α
ν
µ
# ∆α
µ
ν – . * ’ . .
∆α
µ
ν # :
(2)
# K
– , # #
(K
α
µν= K
[
αµ]
ν), Γµ
α
ν
– % ( , . 1-3).
$ # #
" $. # & ( ) ’ ( ’ # ) #:
(3) dds
2x
2µ µ dxds
α dxds
β= 0
+∆(αβ)
d
2x
µ
(4) ds
2 +Γαµβ dxds
α dxds
β= 0
(3) #, (4) ’ .
. $ (3) (4) # #, #,
# :
(5) ∆µ(αβ) =Γαµβ
$ (2) ’ # !:
(6) ∆µ
[
αβ] = K
µ
⋅
αβ
, # #
#. , # (K
α
µν= K
[
αµν]
). . (1) (6) ’
!
(7)
, #, |
(Ωαµν=Ω[αµν] ). 1 |
, |
|||||
$ # |
. |
||||||
% , # |
(7) |
. |
* ’ .
3.
!" " !"# !-
" $ % ! && #
, & -
- -% , #, ( ),
’ #, ,
# .
1) . ( # -
# :
(8) ds
2
= g
µν
dx
µ
dx
ν
g
µ
ν # ∇α
g
µ
ν= 0,
# ∇α
– # # x
α
( ,
. 4-5).
2) . .
0 ,
, ",
# & . ,
A
, # # (2)
#:
(9) ∆α
µ
ν=Γµ
α
ν
+ iA
α
⋅
µν
# A
α
µν=−A
µ
αν=−A
α
νµ=−A
ν
µα= A
[
αµν]
. . % #
:
(10)
$ # A
# #:
(11) A
αµν=−εαµνσA
σ
# A
µ
– # , εα
βµν – 2 3 .
A
µ
# # :
(12) A
µ=−εµαβγA
αβγ
( # ’ , # # ’ a
µ
:
(13) a
µ
= q
ˆA
µ
# q
ˆ – ’ #. . ! (13)
’ . % q
ˆ #
# ! # , , &
( A
~ A
µ
~ 1/q
ˆ ).
1 " (9) # :
(14) Ωα
⋅
µν= 2∆α
[
µν]
= 2iA
α
⋅
µν
$ # "
. * # ,
#
∆α
µ
ν #
# , # Γµ
α
ν
( , . 6).
3) % .
# ( , . 7): (15) R
|
∆α
|
1 - &# " - R
:
(16) R
|
|||
. " (9) - # ( , . 8): (17) R
~ (18) R
(19) R
|
# # |
||
~ 4# R
|
- , |
||
( ). . |
∇~
|
||
# (# Γµ
(11) , (20) A
|
! |
||
. (17), (18), (19) (20) - , #: ~ (21) R
(22) R
|
|||
% # (21) (22), - |
|||
# , |
. |
||
, - F
# : (23) R
(24) F
|
1 F
µ
ν , #
F
µν
:
(25) F
µ
ν= 1
εµ
ναβF
αβ
2
* (24) (11), & &#, # - (25) :
(26) F
µν
=∂µ
A
ν
−∂ν
A
µ
, # " ’ .
. (13) (26) " ’ f
µ
ν
# # #
- :
(27) f
µν
=∂µ
a
ν
−∂ν
a
µ
= q
ˆF
µν
. - (21)
# :
(28) R
= g
µνR
(µν) = R
~ − 6 A
αA
α
# R
~ = R
~
µ
⋅µ
– .
1 , # ’ , # #
& ’ . * ’ ’
( ), "
’ – - .
A
µ
# -
F
µ
ν & ’ a
µ
" f
µ
ν, & & ’ .
4.
’ $ !"( %’ #$"# #
4 , # -
, ,
:
(29) δ LG
− g d
4
x
= 0
# LG
– # . 2 , - , # ,
(29). 2 LG
, ( ! ,
- .
* & ’- ( , . 9-10)
- :
(30.1) Rc
(30.2) Rc
R
µν
R
αβ
(30.3) Rc
(30.4) Rc
(4) ≡δα⋅β⋅γ⋅λ⋅µνστR
µνR
αβR
στR
γλ
* " & - #
#, , " & #
. & "& & - (30) # # . * Rc
(1)
(30.1) # R
. (28) (13)
:
(31) Rc
(1) = R
= R
~ −6A
αA
α= R
~ − q
ˆ62 a
αa
α
$ Rc
(2)
(30.2) δα
⋅
β
⋅
µν &
# - ,
(22) |
(24) |
’ ! |
R
|
’ |
!, (25) (27), &# : |
(32) Rc
(2)
f
αβ
f
α
β q
ˆ
& (31) (32) #, |
- Rc
|
|||
Rc
|
# |
# |
||
. $ |
R
|
&# |
||
( ! , # |
" f
|
|||
’ |
. 1 |
# & # & & - Rc
(1)
Rc
(2)
, " !
# .
3 LG
. (§ 2). . ’ #
# L
2
(R
) , # :
(33) L
2
=
(R
− R
0
)2
= R
2
− 2R
0
R
+ R
0
2
# R
0
– . 2 LG
L
2
&
- :
(34) L
G
= L
2 (R
n
→Rc
(n
) )=Rc
(2) −2R
0Rc
(1) + R
02
$ (34) # # & " #
(33). * R
0
, &# LG
,
# ,
. . " (31) (32) #
#:
(35) L
G
=− R
0
1q
ˆ2 f
αβf
αβ+ R
~ − q
ˆ62 a
αa
α− R
20
. ’ ,
&#:
(36) q
ˆ = 8
π
κR
0
(37) Λ= R
0
4
# Λ – (Λ ~ 10−56
−2
), κ – ( ! . .
" ! (36) # LG
! #:
(38) LG
=−(f
αβ
f
αβ
+ 6R
0
a
α
a
α
)+ R
~
− 1
R
0
2
, # # ’ |
||||
R
|
, ! (37), R
|
|||
# |
(38) .
5.
|
|||
(29) |
(34) |
, |
||
# |
- |
, |
||
’ , |
& |
& |
||
. |
. " (38) |
|||
(29) #: |
||||
( # #
(39) δ −(f
αβf
αβ + 6R
0 a
αa
α)+ R
~ − 1 R
0 − g d
4 x
= 0
2
~ = g
# R
(40)
(41)
#
(42)
(43)
G
µ
ν –
.
’
1
’
’
# µν
R
~
µν. $ g
µν
, Γµ
α
ν
a
α
( ) ( (10)):
G
∇~σf
µσ+3R
0a
µ= 0
# :
≡ R
~µ
ν − 1 g
µ
νR
~
G
µ
ν
2
T
ˆµν ≡ 41π f
a
µa
a
αa
α
( ! , T
ˆ
µ
ν – " ’ - ’ . (40) (41), & , # #
’ # .
#
’ # (41)
- ’ (43), (40) # ( ! , #
. ’ (41) - ,
& .
, |
, |
, |
|||
’ . * |
’ |
||||
. $ |
R
|
||||
& |
(40) |
(41) |
& , |
||
& |
& |
||||
’ |
. |
(41) |
|||
# |
a
|
f
|
|||
. $ |
, # |
a
|
|||
, # f
|
’ |
. |
|||||
- |
T
|
&# |
(40) |
|||
’ - : |
’ |
. % |
# |
’ |
(44) µ
a
µ
. * # |
(41) (41) |
& # |
&#, |
. ~ ∇µ
|
1 T
ˆ
µ
ν # # ’ #
&, ’ - :
(45) ∇µ
T
ˆµν
= ∇~
µ
T
ˆµν
= 0
$ & (45) (40) #
" # 5 , & .
#
R
0
. . (40) :
(46) − R
~ + R
0 = − 3κ4πR
0 a
αa
α = −6A
αA
α
, # " (28) &#,
(47) R
0
= R
~
−6A
α
A
α
= R
1 , R
0
. *
(40) ! (47) !.
(40) (41) # ,
, & ( ),
& #. 3 ,
, . $ :
(48) G
µ
(49) ∇~
σ
f
µσ
+3R
0
a
µ
=ξj
µ
# T
µ
ν = T
ˆ
µ
ν +T
~
µν, T
~
µν – ’ - , T
µ
ν – ’ - , j
µ
– , ξ – (ξ= 4π/ ).
& & #
, & # :
(50) ∇µ
πµ
= ∇~
µ
πµ
= 0
(51) ∇µ
j
µ
= ∇~
µ
j
µ
= 0
# πµ
= µu
µ
( ), j
µ
= ρu
µ
( #), µ –
, ρ – # , u
µ
–
# (dx
µ
d
τ
). $ µ ρ # ,
" . $ & µ, ρ u
µ
, # .
- #
. * # (49) #
& # (51) 2 #
’ :
(52) ∇µ
a
µ
= ∇~
µ
a
µ
= 0
(
. ( ’ (49), # a
µ
#.
* # # (48)
& # ’ - :
(53) ∇µ
T
µν
= ∇~
µ
T
µν
= 0
. ’ ’ -
:
(54) ∇~µT
~µν = −∇~µT
ˆµν
. " (44) (49) (52) T
~
µν
(54)
! #:
(55) j
µ
(55) #
& .
1 # , #
# . 1 ’ - # ! #,
~ = µu
µ
u
ν
=πµ
u
ν
,
# & # & , T
µ
ν
# µ – #, u
µ
– #
# #. # (55) # ’ #
" & (50) #:
(56) j
µ
+ # # # , # #
# ’- . $ ’ πµ
=µu
µ
= m
δ(x
− x
0
)u
µ
j
µ
=ρu
µ
= q
δ(x
− x
0
)u
µ
, # m
q
– # . $
(56) " , u
β
∇~
β
u
ν
= du
ν
d
τ+ Γα
ν
β
u
α
u
β
, :
du
ν
(57) +Γα
νβ
u
αu
β=
q f u
β
d
τ mc
( # # . , # , (57) & # . $ # # 2 , & & # &. 1 , # ! # ( ) # |
|
# # , # # .
6.
|
, |
. ! & ! |
|
# & # &. $ |
’ |
# # # |
|
’ . |
(48) |
# (55) (57) # |
, |
& |
& |
# |
. , |
& ’ |
(49), |
’ - (43). |
,# , # |
R
|
(49), # |
. (49) |
& |
& |
’ |
. 1 , ’ # #, . |
# (49) # |
$ - |
# # |
( g
(58) ∂2
|
(49) #: |
# ∂2
|
# # |
# - |
, # & |
# # .
(58) # !, & # & . $
# & # & ’ ! # #:
(59) a
µ
= a
0
µ
sin(kx
−ωt
)
# x
– # # # & . *
’ ω k
!:
(60) ω2
= 2
(k
2
+3R
0
)
# c
– # # &
#. . ! (60) ’ & ! # #,
, # ’ ’ ,
# # :
(61) v
=ω
k
= c
1+ 3
k
R
2
0
> c
(62) v
= d
dk
ω
= c
1− 3R
0
ωc
2
2
< c
1 , ’ # , & (58), ’ # # ! # c
(62). % # (61) (62)
( # ). &
# c
. , c
# & , ’ ! # .
$ - ! (58)
#. . (58) ’
’ & # & # :
(64) ϕ = q
e
−αr
r
# ϕ= a
0
(’ ), q
– ’ #, α= 3R
0
= m
γ
c
/ , r
– # # #. - α
(64) « » ’ .
. , &
’ (58) , ,
! ’ & , m
γ
:
3R
0
(63) m
γ
=
c
* ’ # # (62). .
(63)
. (63) ’ .
* ! (37) , &
’ :
(64) 3R
0
~10−55
−2
(65) m
γ
~ 10−65
* # # #
’ . . ’
# # # # :
(66) m
γ
< 3⋅10−60
1 (65) # ’ . ( ,
# ’ , # " # # ’ , # ’ .
7.
,#%-(
. &
’ , ’ ’ & # . *
#&#,
# ’ . $ - -% ( ). * ’ -
.
. # #
, ’ – ( ),
# & -
. / # ’ # & & ’
. ( #
, " ’ –
# - . * ’ #
# &
’ .
$ & & & (
) # & & # # &
# #, # #.
, # ’
, #"
. 3 ’ &
# , ( ’ - ). ) &
’ # , "
’ # ’ - ’ . $ & &
. * , # " & &
’ , # !
2 . $ &, # , , ( ! ( ).
. ’ , " ’ ,
. * ’
, . * # &#
’ .
$ , #
, # & &
& ! .
_____________________
"
1. 0 - -% :
∆αµν = Γµαν + K
α⋅µν
K
αµν = −K
µαν
2. ." % :
σ
=∂µ
g
, # g
= det g
µ
ν
Γµσ
2g
3. $ # :
Ωαµν = ∆αµν − ∆ανµ = K
αµν − K
ανµ
K
αµν = 1 (Ωαµν − Ωµαν − Ωναµ)
2
4. :
δu
µ = −∆µαβu
αdx
β, δu
µ = ∆αµβu
αdx
β
5. % # :
∇µu
ν = ∂µu
ν + ∆νσµu
σ, ∇~µu
ν = ∂µu
ν + Γσνµu
σ
∇µu
ν = ∂µu
ν − ∆σνµu
σ, ∇~µu
ν = ∂µu
ν − Γνσµu
σ
6. % # # ∆α
µ
ν = Γµ
α
ν
+ iA
α
⋅
µν:
A
α⋅µα = A
α⋅(µν) = 0, ∆αµα = Γµαα , ∆α(µν) = Γµαν
∇µu
µ = ∂µu
µ+ ∆µσµu
σ = ∂µu
µ+ Γσµµu
σ
∇µ
T
(µν)
= ∂µ
T
(µν)
+∆µσµ
T
(σν)
+ ∆ν(
σµ
)
T
(µσ)
= ∂µ
T
µν + Γσ
µµ
T
(σν)
+ Γσ
νµ
T
(µσ)
7. 1 - :
(∇µ∇ν −∇ν∇µ)u
λ = R
λ⋅σµνu
σ + Ωσ⋅µν∇σu
λ
R
α⋅βµν = ∂µ∆αβν − ∂ν∆αβµ+ ∆ατµ∆τβν − ∆ατν∆τβµ
Ωα
⋅
µν = ∆α
µ
ν − ∆α
ν
µ
8. - - :
R
+∇~ α −∇~νK
α⋅βµ+ K
α⋅τµK
τ⋅βν− K
α⋅τνK
τ⋅βµ
µK
⋅βν
9. 1 2 3 :
εαβγλ
= g
[αβγλ], εαβγλ
=− 1
[αβγλ]
+1, αβγλ - " 0123
[αβγλ
]= −1, αβγλ - " 0123
0, αβγλ #
10. * ’- :
δα⋅β⋅γ⋅ λ⋅µνστ ≡ −εαβγλεµνστ δα⋅β⋅γ⋅µνσ ≡ −εαβγτεµνστ
!"#!&"#
1. Einstein A.,
The Meaning of Relativity, Princeton Univ. Press, Princeton, N.Y, 1950
(* #: (!& ! ).,
. , 2, ., 1955).
2. ).
(!& ! ,
. & #, 1. 1-2, #- «) », ., 1966.
3. E. Schrodinger,
Space-Time Structure, Cambridge University Press, 1960 (* #:
(. 6#, * - , , )7 ,
2000).
4. * *.
".,
* & +.
,.,
1 , #- «) », ., 1973.
5. C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation, Freeman, San Francisco,
1973 (* #: -.
, , .
. ,
" .
/ ,
/ , #- « », .,
1977).
6. 0.
).
" $ , .
1.
% ,
).
..
2 ,
. : #
, #- «) », ., 1986.
7. E. Cartan,
Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928 and 1946 (* #: % (., -
, #- /, ., 1960).
8. +. Cartan,
On Manifolds with an Affine Connection and the Theory of General Relativity, translated by A. Magnon and A. Ashtekar (Bibliopolis, Naples, 1986).
9. %.
%.
1 ,
) # -
, #- «+# -..», 2002 .
10. 3. .
- $ ,
0 & # , 7),
1 119. . 3, 1976.
11. Alberto Saa,
Einstein-Cartan theory of gravity revisited, gr-qc/9309027 (1993).
12. Hong-jun Xie and Takeshi Shirafuji,
Dynamical torsion and torsion potential, gr-qc/9603006 (1996).
13. V.C. de Andrade and J.G. Pereira,
Torsion and the Electromagnetic Field, gr-qc/9708051 (1999).
14. Yuyiu Lam
,
Totally Asymmetric Torsion on Riemann-Cartan Manifold, gr-qc/0211009 (2002).
Название реферата: Единая геометрическая теория классических полей
Слов: | 5167 |
Символов: | 37879 |
Размер: | 73.98 Кб. |
Вам также могут понравиться эти работы:
- Меры электрических величин Измерительные трансформаторы тока
- Расчёт резервуара и опорной стержневой конструкции
- Расчёт волновой функции в квантовой яме сложной формы
- Рене Декарт - засновник сучасної науки Пам яті видатного мислителя
- Энергоснабжение пищеблока больницы г Почепа
- Сопротивление материалов 2 Методическое указание
- Высокотемпературная сверхпроводимость 2