РефератыХимияХиХимические реакции

Химические реакции

Содержание.


стр.





1. Химические реакции.


2. Окислительно-восстановительные реакции.


3. Реакции в растворах электролитов.


4. Представление о кислотах и основаниях.


5. Гидролиз солей.


Список литературы.


2


3


4


5


7


9



1. Химические реакции


Химические свойства веществ выявляются в химических реакциях
. Химическая реакция заключается в разрыве одних и образовании других связей. Химическая реакция изображается в общем виде уравнением


aA + bB = cC + dD,


где вещества A и B, вступившие в реакцию, называют реагентами
(или исходными веществами
), а новые вещества C и D, образующиеся в результате протекания реакции, - продуктами
(или конечными веществами
). Целочисленные параметры a, b, c и d в уравнении реакции называют стехиометрическими коэффициентами.


Химические реакции классифицируются различными способами:


1) По типу взаимодействия:


реакции разложения
2HgO = 2Hg + O2


реакции соединения
2Na + Cl2
= 2NaCl


реакции замещения
CuO + H2
= H2
O + Cu


реакции двойного обмена
CaO + 2HCl = CaCl2
+ H2
O


Указанные типы нередко совмещаются в более сложных реакциях. Например:


Na2
CO3
+ 2HCl = 2NaCl + CO2
­ + H2
O.


Эта реакция – одновременно и реакция двойного обмена, и реакция разложения, так как промежуточно образующаяся угольная кислота H2
CO3
неустойчива и разлагается на CO2
и H2
O.


2) По тепловому эффекту:


экзотермические
реакции, протекающие с экзо
-эффектом – выделением энергии в форме теплоты (+Q):


C + O2
= CO2
+ Q,


эндотермические
реакции, протекающие с эндо
-эффектом – поглощением энергии в форме теплоты (-Q):


N2
+ O2
= 2NO – Q.


3) По направлению протекания процесса реакции подразделяются на необратимые
, которые протекают только в прямом направлении и завершаются полным
превращением реагентов в продукты:


AgNO3
+ NaCl = AgCl¯ + NaNO3
,


и обратимые
реакции, которые протекают одновременно в прямом и обратном направлениях, при этом реагенты превращаются в продукты лишь частично (т.е. реакции не идут до конца слева направо):


2SO2
+ O2
« 2SO3
.


Необратимость химической реакции подчёркивается в уравнении знаком равенства (=) между формулами реагентов и формулами продуктов, а обратимость реакции – специальным знаком – противоположно направленными стрелками («).


4) По изменению степеней окисления реакции подразделяются на:


протекающие без изменения степеней окисления всех элементов, входящих в исходные вещества, например


NaOH + HCl = NaCl + H2
O,


и окислительно-восстановительные реакции, протекающие с изменением степеней окисления всех или некоторых (или даже хотя бы одного!) элементов, например:


2Cu0
+ O0
= 2Cu2+
O2-
,


Cu2+
O2-
+ H0
= Cu0
+ H1+
O2-
,


Cl0
+ 2Na1+
O2-
H1+
= Na1+
Cl1-
+ Na1+
Cl1+
O2-
+ H1+
O2-
.


2. Окислительно-восстановительные реакции


Окислительно-восстановительные реакции
– это химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ.


Окисление
– это процесс отдачи электронов атомом, молекулой или ионом. Если атом отдаёт свои электроны, то он приобретает положительный заряд, например:


Zn0
– 2e = Zn2+
.


Если отрицательно заряженный ион (заряд –1), например Cl-
, отдаёт 1 электрон, то он становится нейтральным атомом:


Cl-
- 1e = Cl0
.


Если положительно заряженный ион или атом отдаёт электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:


Fe2+
- 1e = Fe3+
.


Восстановление
– это процесс присоединения электронов атомом, молекулой или ионом. Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:


S0
+ 2e = S2-
.


Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается, например:


Mn7+
+ 5e = Mn2+
,


или он может перейти в нейтральный атом:


H+
+ 1e = H0
,


Al3+
+ 3e = Al0
.


Окислителем
является атом, молекула или ион, принимающий
электроны
. Восстановителем
является атом, молекула или ион, отдающий
электроны
.


Окислитель
в процессе реакции восстанавливается
, а восстановитель
- окисляется
.


Следует помнить, что рассмотрение окисления (восстановления) как процесса отдачи (и принятия) электронов атомами или ионами не всегда отражает истинное положение, так как во многих случаях происходит не полный перенос электронов, а только смещение электронного облака от одного атома к другому.


3. Реакции в растворах электролитов


Электролиты
– это вещества, растворы которых обладают ионной проводимостью.


Поскольку электролиты в растворах образуют ионы, то для отражения сущности реакций часто используют так называемые ионные уравнения
реакций. Написанием ионных уравнений подчёркивается тот факт, что, согласно теории диссоциации, в растворах происходят реакции не между молекулами, а между ионами.


С точки зрения теории диссоциации при реакциях между ионами в растворах электролитов возможны два исхода
:


1. Образующиеся вещества – сильные электролиты, хорошо растворимые в воде и полностью диссоциирующие на ионы.


2. Одно (или несколько) из образующихся веществ – газ, осадок или слабый электролит (хорошо растворимый в воде).


Например, можно рассмотреть две реакции:


2Al + 2NaOH + 6H2
O = 2Na[Al(OH)4
] + 3H2
­, (1)


2Al + 2KOH + 6H2
O = 2K[Al(OH)4
] + 3H2
­. (2)


В ионной форме уравнения (1) и (2) запишутся следующим образом:


2Al + 2Na+
+ 2OH-
+ 6 H2
O = 2Na+
+ 2[Al(OH)4
]-
+ 3H2
­, (3)


2Al + 2K+
+ 2OH-
+ 6 H2
O = 2K+
+ 2[Al(OH)4
]-
+ 3H2
­, (4)


В данном случае алюминий не является электролитом, а молекула воды записывается в недиссоциированной форме потому, что является очень слабым электролитом. Неполярные молекулы водорода практически нерастворимы в воде и удаляются из сферы реакции. Одинаковые ионы в обеих частях уравнений (3), (4) можно сократить, и тогда эти уравнения преобразуются в одно сокращённое ионное уравнение взаимодействия алюминия с щелочами:


2Al + 2OH-
+ 6H2
O = 2[Al(OH)4
]-
+ 3H2
­. (5)


Очевидно, что при взаимодействии алюминия с любой щелочью реакция будет описываться уравнением (5). Следовательно, ионное уравнение, в отличие от молекулярного, относится не к одной какой-нибудь реакции между конкретными веществами, а к целой группе аналогичных реакций.
В этом его большая практическая ценность и значение, например благодаря этому широко используются качественные реакции
на различные ионы.


Так, при помощи ионов серебра Ag+
можно обнаружить присутствие в растворе ионов галогенов, а при помощи ионов галогенов можно обнаружить ионы серебра; при помощи ионов бария Ba2+
можно обнаружить ионы SO2-
и наоборот.


С учётом вышеизложенного можно сформулировать правило, которым удобно руководствоваться при изучении процессов, протекающих в растворах электролитов.


Реакции между ионами в растворах электролитов идут практически до конца в сторону образова

ния осадков, газов и слабых электролитов.


Следовательно, реакции идут с образованием веществ с меньшей концентрацией ионов в растворе в соответствии с законом действующих масс. Скорость прямой реакции пропорциональна произведению концентраций ионов реагирующих компонентов, а скорость обратной реакции пропорциональна произведению концентраций ионов продуктов. Но при образовании газов, осадков и слабых электролитов ионы связываются (уходят из раствора) и скорость обратной реакции уменьшается.


4. Представление о кислотах и основаниях


Определения кислот и оснований с точки зрения теории диссоциации были даны С. Аррениусом.


Кислотой
называется соединение, образующее при диссоциации в водном растворе из положительных ионов только ионы водорода
H+
. В соответствии с этим определением к кислотам относятся, например, HCl, H2
SO4
, HNO3
, H2
S.


Основанием
называется соединение, образующее при диссоциации в водном растворе из отрицательных ионов только гидроксид-ионы
OH-
. По современной номенклатуре основания принято называть гидроксидами элементов с указанием степени окисления: NaOH – гидроксид натрия, KOH – гидроксид калия, Ca(OH)2
– гидроксид кальция, Cr(OH)2
– гидроксид хрома (II), Cr(OH)3
– гидроксид хрома (III).


Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами) и нерастворимые в воде. Основное различие между ними заключается в том, что концентрация ионов OH-
в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее небольшие равновесные концентрации иона OH-
даже в растворах нерастворимых оснований определяют свойства этого класса соединений.


После Аррениуса было показано, что определение кислот и оснований в терминах теории электролитической диссоциации не охватывает всего многообразия кислотно-основных свойств веществ. Дальнейшее развитие химии потребовало уточнить и дополнить определения кислот и оснований.


Согласно протонной
теории кислот и оснований, предложенной И. Бренстедом, кислотой
называют вещество, отщепляющее при данной реакции протоны, а основанием
– вещество, способное принимать протоны. Любая реакция отщепления протона выражается уравнением


кислота ® основание + H+
.


На базе таких представлений понятными становятся основные свойства аммиака, который за счёт неподелённой пары электронов атома азота эффективно принимает протон при взаимодействии с кислотами, образуя за счёт донорно-акцепторной связи ион аммония:


HNO3
+ NH3
« NH+
+ NO-
.


Возможно и ещё более общее определение кислот и оснований. Г. Льюис предположил, что кислотно-основные взаимодействия совсем необязательно происходят с переносом протона
. В определении кислот и оснований по Льюису основная роль отводится участию электронных пар
в химическом взаимодействии.


Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.


Так, например, фторид алюминия AlF3
– кислота, способная принимать электронную пару при взаимодействии с аммиаком:


AlF3
+ :NH3
« [AlF3
]:[NH3
].


Катионы, анионы или нейтральные молекулы, способные отдавать электронные пары, называют основаниями Льюиса
. В только что рассмотренном примере аммиак является основанием.


Определение Г. Льюиса охватывает все кислотно-основные процессы, рассмотренные ранее предложенными теориями.


5. Гидролиз солей


Солями
называются соединения, образующие при диссоциации в водном растворе положительно заряженные ионы металлов
и отрицательно заряженные ионы кислотных остатков
, а иногда кроме них, ионы водорода и гидроксид-ионы, например:


Na2
SO4
« 2Na+
+ SO2-
,


NaHSO4
« Na+
+ HSO-
« Na+
+ H+
+ SO2-
,


Mg(OH)Cl « Mg(OH)+
+ Cl-
« Mg2+
+ OH-
+ Cl-
.


В соответствии с данным определением соли делятся на средние
(Na2
SO4
), кислые
(NaHSO4
) и основные
(Mg(OH)Cl).


Общеизвестно, что реакция чистой воды является нейтральной (pH = 7). Водные растворы кислот и оснований имеют соответственно кислую (pH < 7) и щелочную (pH > 7) реакцию. Практика, однако, показывает, что не только кислоты и основания, но и соли могут иметь щелочную или кислую реакцию – причиной этого является гидролиз солей
.


Взаимодействие солей с водой, в результате которого образуются кислота (или кислая соль) и основание (или основная соль), называется гидролизом солей.


Причиной гидролиза является электролитическая диссоциация соответствующих солей и воды. Вода незначительно диссоциирует на ионы H+
и OH-
, но в процессе гидролиза один или оба из этих ионов могут связываться ионами, образующимися при диссоциации соли, в малодиссоциированные, летучие или труднорастворимые вещества. Рассмотрим гидролиз солей следующих основных типов:


1. Соли сильного основания и
сильной кислоты
при растворении в воде (например, NaCl, CaCl2
, K2
SO4
) не гидролизуются, и раствор соли имеет нейтральную реакцию.


2. Соли сильного основания и слабой кислоты
, например KClO, Na2
CO3
, CH3
COONa, NaCN, Na2
S, K2
SiO3
.


Запишем уравнение гидролиза ацетата натрия:


CH3
COONa + H2
O « CH3
COOH + NaOH.


В результате реакции образовался слабый электролит – уксусная кислота. В ионном виде этот процесс можно записать так:


CH3
COO-
+ H2
O « CH3
COOH + OH-
.


Следовательно, раствор CH3
COONa будет проявлять щелочную реакцию.


При растворении солей многоосновных кислот гидролиз протекает ступенчато, например:


Na2
S + H2
O « NaHS + NaOH


или в ионной форме


S2-
+ H2
O « HS-
+ OH-
. (6)


Процесс (6) отражает гидролиз Na2
S по первой ступени. Чтобы гидролиз прошёл полностью, как правило, увеличивают температуру процесса:


HS-
+ H2
O « H2
S + OH-
.


Таким образом, при растворении в воде соли сильного основания и слабой кислоты раствор приобретает щелочную
реакцию вследствие гидролиза.


3. Соли слабого основания и сильной кислоты
, например Al2
(SO4
)3
, FeCl2
, CuBr2
, NH4
Cl.


Рассмотрим гидролиз хлорида железа (II):


FeCl2
+ H2
O « Fe(OH)Cl + HCl. (7)


В ионном виде этот процесс можно записать так:


Fe2+
+ H2
O « Fe(OH)+
+ H+
. (8)


По второй ступени гидролиз протекает следующим образом:


Fe(OH)+
+ H2
O « Fe(OH)2
+ H+
. (9)


Из реакций (7)-(9) ясно, что в результате гидролиза солей слабого основания и сильной кислоты раствор приобретает кислую
реакцию.


4. Соли слабого основания и слабой кислоты
, например Al2
S3
, Cr2
S3
, CH3
COONH4
, (NH4
)2
CO3
. При растворении в воде таких солей образуются малодиссоциирующие кислота и основание:


CH3
COONH4
+ H2
O « CH3
COOH + NH4
OH


или в ионном виде:


CH3
COO-
+ NH+
+ H2
O « CH3
COOH + NH4
OH.


Реакция среды в растворах подобных солей зависит от относительной силы кислоты и основания. Другими словами, водные растворы таких солей могут иметь нейтральную, кислую или щелочную реакцию в зависимости от констант диссоциации образующихся кислот и оснований.


Так, при гидролизе CH3
COONH4
реакция раствора будет слабощелочной, поскольку константа диссоциации гидроксида аммония (K = 6,3 * 10-5
) больше константы диссоциации уксусной кислоты (K = 1,75 * 10-5
).


Список литературы


1. Кузьменко Н. Е., Еремин В. В., Попков В. А. Начала химии. Современный курс для поступающих в вузы: В 2 т. М.: 1-я Федерат. книготорг. компания, 1998.


2. Хомченко Г. П. Химия для поступающих в вузы. М.: Высшая школа, 1988.


3. Фримантл М. Химия в действии: В 2 ч. М.: Мир, 1991.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Химические реакции

Слов:2193
Символов:18812
Размер:36.74 Кб.