РефератыЭкономикаОсОсновные массивы в статистике

Основные массивы в статистике

Тема 1.


Вопросы:


1. Какие явления изучает статистика?


Статистика изучает массовые социально-экономические явления и процессы, выступающие как множества отдельных фактов, обладающих как индивидуальными, так и общими признаками.


2. Что понимается под статистической закономерностью?


Статистическая закономерность – это форма проявления причинной связи, выражающаяся в последовательности, регулярности, повторяемости событий с достаточно высокой степенью вероятности, если причины (условия), порождающие события, не изменяются или изменяются незначительно.


3. На какие науки опирается и в каких науках используется статистика?


Статистика во многом опирается на математику и теорию вероятностей. Используется статистика в таких науках как математическая статистика, экономическая статистика, прикладная статистика, разнообразные отраслевые статистики, демография и др.


4. Как организована государственная статистика Российской Федерации, в каких изданиях публикуются статистические данные?


Структура органов государственной статистики соответствует административно-территориальному делению страны. В двух городах – Москве и Санкт-Петербурге имеются местные комитеты по статистике, то же – в автономных республиках. В краях и областях также работают комитеты статистики. Низовым звеном являются районные инспектуры государственной статистики, которые имеются в административных районах краев и областей, крупных городов.


Статистические данные публикуют журналы «Коммерсант»,»Вопросы статистики», «Статистическое обозрение», газеты «Деловой мир», «Финансовая газета», статистический ежегодник «Российская федерация в 20.. году», региональные статистические сборники и др.


Задание 1


1. Статистика исследует не отдельные факты, а массовые социально-экономические явления и процессы, выступающие как множества отдельных фактов, обладающих как индивидуальными, так и общими признаками.


2. Статистика изучает, прежде всего, количественную сторону общественных явлений и процессов в конкретных условиях места и времени.


3. статистика характеризует структуру общественных явлений.


4. Статистика исследует изменение уровня и структуры явления в динамике.


5. статистика выявляет взаимосвязь явлений.


Задание 2


Производительность сельскохозяйственных предприятий. Изучая это явление, можно выявить наиболее и наименее доходные предприятия, выявить территориальное расположение крупнейших предприятий.


Распределение жителей страны по росту, окружности головы, длине стопы и другим физическим признакам. Эти данные необходимы для предприятий, изготавливающих одежду и обувь.


Задание 3


Совокупность студентов второго курса. Интерес для статистки могут представлять средний возраст студентов и их средний балл.


Совокупность преподавателей. Интерес для статистики могут представлять процент занятости преподавателей (ставка) и структура их ученых званий (доцент, кандидат наук, профессор).


Тема 3.


Вопросы:


1. Из каких этапов состоит статистическое исследование, и какие задачи решает каждый этап?


К этапам статистического исследования относятся:


- Статистическое наблюдение – массовый научно организованный сбор первичной информации об отдельных единицах изучаемого явления;


- Группировка и сводка материала – обобщение данных наблюдения для получения абсолютных величин (учетно-оценочных показателей) явления;


- Обработка статистических данных и анализ результатов для получения обоснованных выводов о состоянии изучаемого явления и закономерности его развития.


2. Какие формы статистического наблюдения используются, и в каких случаях они применяются?


Статистические наблюдения можно разбить на группы по следующим признакам:


1. Времени регистрации фактов


- Текущее. Изменения в отношении изучаемых явлений фиксируются по мере их наступления. Проводится с целью изучения динамики явления.


- Периодическое. Данные, отражающие изменения объекта, собираются в ходе нескольких исследований. Цель и программа схожи с предыдущим методом.


- Единовременное. Дает сведения о количественных характеристиках явления или процесса в момент его исследования.


2. Охвату единиц совокупности


- Сплошное. Получение информации о всех единицах исследуемой совокупности.


- Несплошное. Получение информации в более короткие сроки, чем при сплошном.


- Выборочное. Характеристики всей совокупности фактов дается по некоторой их части, отобранной в случайном порядке.


- Метод основного массива. Наблюдение ведется за наиболее крупными единицами совокупности, в которых сосредоточена значительная часть всех подлежащих изучению фактов.


- Монографическое. Проводится с целью выявления имеющихся или намечающихся тенденций в развитии нового явления.


3. Что такое абсолютные и средние величины статистической сводки?


Абсолютными величинами в статистике называются показатели, выражающие численность единиц совокупности и суммы изучаемых признаков в соответствующих единицах меры по признакам и вцелом по совокупности. Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.


Задание 4


Результаты экзамена по статистике в группе из 20 человек заданы в следующей строчке: 5, 4, 4, 5, 3, 3, 2, 4, 5, 3, 4, 4, 4, 5, 3, 2, 2, 4, 4, 5.




















Оценка Частота
2 3
3 4
4 8
5 5
Всего 20

Средняя оценка:



Тема 5


статистика закономерность показатель


Вопросы:


1. Как связаны относительные и абсолютные показатели?


Относительный показатель представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений.


2. Какие виды относительных показателей используются в статистике?


В статистике используются относительные показатели:


- Динамики;


- Плана;


- Реализации плана;


- Структуры;


- Координации;


- Интенсивности и уровня экономического развития;


- Сравнения.


3. Как определяются средняя величина и чем отличаются простые и взвешенные средние?


Определить среднюю во многих случаях можно через исходное соотношение средней или ее логическую формулу:



Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность.


4. Какие виды средних величин используются в статистике?


В статистике используют следующие виды средних величин:


- Средняя арифметическая;


- Средняя гармоническая;


- Средняя геометрическая;


- Средняя квадратическая, кубическая и т.д.


5. Что такое структурные средние?


В качестве статистических характеристик вариационных рядов распределения рассчитываются структурные средние – мода и медиана.


Мода представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой.


Медианой называется значение признака, приходящееся на середину ранжированной совокупности.


Задание 1


Объем продаж в магазине в 199г. Составил (в тыс. руб.)


















Месяц Январь Февраль Март Апрель Май Июнь
Объем продаж 92 88 103 98 102 96

Относительные показатели динамики:







Цепные показатели динамики:







Среднемесячный объем продаж:



Средний цепной показатель динамики:



Медианное значение объема продаж:



Задание 2


Сведения о заработной плате промышленных предприятий города N даны в таблице


















Предприятие Месячный фонд заработной платы (тыс. руб.) Средняя заработная плата (руб.)
Цементный завод 586 1125
Молокозавод 375 820
Мебельный комбинат 521 1012

Относительные показатели структуры и координации:








Отображение табличных данных на диаграммах:



Месячный фонд заработной платы (тыс. руб.)



Средняя заработная плата (руб.)


Средняя заработная плата:



Значение моды для заработной платы:



Задание 3


Данные о стоимости жилья приведены в таблице




















Цена 1 (в $) Общая площадь (в тыс. )
100-200 31,1
200-300 21,5
300-400 8,4
400-500 8
500-600 14

Относительные показатели структуры:







Значения моды и медианы:




Гистограмма и кумулята:



Гистограмма



Кумулята


Средняя цена за 1



Значение первой квартили



Тема 7.


Вопросы:


1. Что такое генеральная и выборочная совокупности?


Совокупность отобранных для обследования единиц в статистике принято называть выборочной, а совокупность единиц, из которых производится отбор – генеральной.


2. Какие виды выборок использую

тся?


Виды выборок:


- Собственно-случайная;


- Механическая;


- Типическая;


- Серийная;


- Комбинированная.


3. Что такое доверительная вероятность и предельная ошибка выборки?


Доверительная вероятность – вероятность того, что значение параметра генеральной совокупности находится в построенном для него доверительном интервале.


Предельная ошибка выборки дает возможность оценить, в каких пределах находится величина генеральной средней.


4. Как сравниваются результаты нескольких выборок?


На основании сравнения двух выборочных средних делается вывод о случайности или существовании зависимости их расхождений. Для этого абсолютная разность показателей сопоставляется со средней ошибкой разности. Если при результат этого соотношения , то делается вывод о случайности расхождения. Если , то полученное значение сравнивают с табличным, определяемым по таблицам t-распределения Стьюдента при заданном числе степеней свободы и уровне значимости. И если , расхождение можно считать случайным.


5. Как рассчитывается необходимая численность выборки?


Для определения необходимой численности выборки исследователь должен задать уровень точности выборочной совокупности с определенной вероятностью.


Задание 1


Для определения среднего уровня зарплаты в деревообрабатывающей промышленности были установлены зарплаты 625 рабочих, отобранных методом случайной выборки. При этом средний уровень зарплаты по выборке равен 1134 руб., среднеквадратичное отклонение 111 руб. Найти 95% доверительный интервал для значения средней зарплаты рабочих в промышленности.



Задание 2


Для определения среднего возраста студентов вуза с числом студентов 1250 был зафиксирован возраст 100 студентов.






















Возраст 17 18 19 20 21 22 23 24
Число студентов 11 13 17 20 15 11 7 6

Средний возраст студентов выборки:



Среднеквадратическое отклонение студентов выборки:



99% доверительный интервал для среднего возраста студентов вуза:



Задание 3


В городе проводится обследование семей с целью выявления доли расходов семейных бюджетов на оплату жилья. Предыдущее аналогичное исследование дало результаты в 9,6%. Сколько нужно обследовать семей, чтобы с вероятностью 0,99 и точностью не менее 0,5% определить эту долю?



Задание 4


В городе исследуются затраты времени жителей на ведение домашнего хозяйства. Опрошено 101 мужчина и 199 женщин. При этом выяснилось, что мужчины тратят на домашние работы в среднем 2,5 часа при среднеквадратичном отклонении 20 мин., а женщины – 3,5 часа при среднеквадратичном отклонении 10 мин. Найти 99% доверительный интервал для разности значений среднего времени, затрачиваемого женщинами и мужчинами на домашние работы.


Можно ли по приведенным данным утверждать, что женщины, проживающие в этом городе, в среднем затрачивают больше времени на домашние работы, чем мужчины?




Так как t=28.43 >3, то можно утверждать, что женщины затрачивают больше времени на домашние работы.


Тема 9


Вопросы:


1. Какие виды связей существуют?


В статистике выделяют следующие виды связей:


- Статистическая;


- Корреляционная;


- Стохастическая;


- Функциональная;


- Прямая;


- Обратная;


- Прямолинейная;


- Нелинейная.


2. Что такое корреляция?


Корреляция – это статистическая зависимость между случайными величинами, не имеющими строгого функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.


3. Как строится уравнение регрессии?


Уравнение регрессии имеет вид:



где - среднее значение результативного признака при определенном значении факторного признака х,


- свободный член уравнения,


- коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака у от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения – вариация у, приходящаяся на единицу вариации х.


4. Что такое значимость параметров уравнения взаимосвязи и как она оценивается?


Значимость параметров уравнения взаимосвязи – соответствие оценок корреляции и регрессии истинным параметрам взаимосвязи. Ее можно оценить с помощью ошибки коэффициента корреляции.



В первом приближении нужно, чтобы . Значимость rxy проверяется его сопоставлением с , при этом получают



где tрасч – так называемое расчетное значение t-критерия.


Если tрасч больше теоретического (табличного) значения критерия Стьюдента (tтабл) для заданного уровня вероятности и (n-2) степеней свободы, то можно утверждать, что rxy значимо.


5. Какие существуют непараметрические методы оценки связей?


- Распределение единиц совокупности в форма таблиц взаимной сопряженности;


- Вычисление коэффициента взаимной сопряженности;


- Вычисление ранговых коэффициентов корреляции.


Задание 1


По восьми предприятиям района имеются следующие данные об объеме реализованной продукции и полученной прибыли.
































№ предприятия 1 2 3 4 5 6 7 8
Объем реализованной продукции (млн. руб.) 92 83 82 79 77 75 74 60
Прибыль (млн. руб.) 14,4 13,2 7,2 7,3 6 8 10,1 5

Уравнение парной линейной регрессии:


- уравнение парной регрессии. Коэффициенты найдем из системы нормальных уравнений:





- уравнение регрессии








































































x y
92 14,4 8464,00 1324,80 7,87 207,36
83 13,2 6889,00 1095,60 8,35 174,24
82 7,2 6724,00 590,40 8,40 51,84
79 7,3 6241,00 576,70 8,56 53,29
77 6 5929,00 462,00 8,67 36,00
75 8 5625,00 600,00 8,78 64,00
74 10.1 5476,00 747,40 8,83 102,01
60 5 3600,00 300,00 9,58 25,00
622 71,2 45348,00 5696,90 69,04 713,74

Уравнение обратной линейной зависимости (гиперболы):


- уравнение гиперболы (в общем виде).


- уравнение гиперболы.


Оценка тесноты связи:


Для оценки тесноты связи применим формулу:





Отображение результатов на графиках:



Выводы об объеме реализованной продукции и прибыли:


Прибыль и объем реализованной продукции слабо связаны друг с другом, т. к. .


Задание 2


С помощью коэффициента корреляции рангов Спирмена установите тесноту связи между ценой спроса и предложения на девять различных товаров



































№ товара 1 2 3 4 5 6 7 8 9
Цена спроса 140 145 149 149 184 189 200 220 220
Цена предложения 131 136 181 172 196 202 200 211 264

Для расчета коэффициента Спирмена вначале ранжируем значения признаков в каждом ряду. Затем находим разности рангов, возводим их в квадрат и подставляем в формулу:











































































x y
140 131 1 1 0 0
145 136 2 2 0 0
149 181 3 4 -1 1
149 172 4 3 1 1
184 196 5 5 0 0
189 202 6 7 -1 1
200 200 7 6 1 1
220 211 8 8 0 0
220 264 9 9 0 0
4


Судя по значению полученного коэффициента, связь между x и y довольно большая.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Основные массивы в статистике

Слов:2088
Символов:22240
Размер:43.44 Кб.